-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathpredict.py
80 lines (66 loc) · 2.34 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import pandas as pd
import numpy as np
from utils.DataLoade import CustomDataset
# from torch.utils.data import DataLoader
from model.FCN import FCN32s,FCN8x
from model.Unet import UNet
import torch
import os
from model.DeepLab import DeepLabV3
# from torch import nn,optim
# from torch.nn import functional as F
from utils.eval_tool import label_accuracy_score
model = 'UNet'
GPU_ID = 1
INPUT_WIDTH = 320
INPUT_HEIGHT = 320
BATCH_SIZE = 32
NUM_CLASSES = 21
LEARNING_RATE = 1e-3
model_path='./model_result/best_model_{}.mdl'.format(model)
torch.cuda.set_device(GPU_ID)
# net = FCN8x(NUM_CLASSES)
# net = net.cuda()
# net = DeepLabV3(NUM_CLASSES)
net = UNet(3,NUM_CLASSES)
#加载网络进行测试
def evaluate(model):
import random
from utils.DataLoade import label2image,RandomCrop
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from PIL import Image
test_csv_dir = './data/test.csv'
testset = CustomDataset(test_csv_dir,INPUT_WIDTH,INPUT_HEIGHT)
test_dataloader = DataLoader(testset,batch_size = 15,shuffle=False)
net.load_state_dict(torch.load(model_path,map_location='cuda:1'))
# index = random.randint(0, len(testset) - 1)
# index = [5,6]
for (val_image,val_label) in test_dataloader:
# val_image, val_label = test_dataloader[1]
net.cuda()
out = net(val_image.cuda()) #[10, 21, 320, 320]
pred = out.argmax(dim=1).squeeze().data.cpu().numpy() # [10,320,320]
label = val_label.data.numpy() # [10,320,320]
val_pred, val_label = label2image(NUM_CLASSES)(pred, label)
for i in range(15):
val_imag = val_image[i]
val_pre = val_pred[i]
val_labe = val_label[i]
# 反归一化
mean = [.485, .456, .406]
std = [.229, .224, .225]
x = val_imag
for j in range(3):
x[j]=x[j].mul(std[j])+mean[j]
img = x.mul(255).byte()
img = img.numpy().transpose((1, 2, 0)) # 原图
fig, ax = plt.subplots(1, 3,figsize=(30,30))
ax[0].imshow(img)
ax[1].imshow(val_labe)
ax[2].imshow(val_pre)
# plt.show()
plt.savefig('./pic_results/pic_{}_{}.png'.format(model,i))
break # 只显示一个batch
if __name__ == "__main__":
evaluate(model)