-
Notifications
You must be signed in to change notification settings - Fork 4
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
FinalLoss nan Loss nan Accuracy 0.0000. #4
Comments
batch size should be 16
mtli77 ***@***.***> 于2021年8月16日周一 下午2:07写道:
… Hi, @liuzhengzhe <https://github.com/liuzhengzhe>
Thanks for sharing the code.
Considering my experiments environment:
cudatoolkit 10.1.243, pytorch 1.4.0, V10.0.130, python 3.7
But during the training phase, after about one thousand iterations, the
accuracy was reported to be 0.000.
So, what is wrong with it?
[2021-08-16 13:41:51,361 INFO train.py line 404 34387] Epoch: [1/50][10/11134] Data 0.000 (0.092) Batch 0.455 (0.590) Remain 91:10:10 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.8626 FinalLoss 4.4894 Loss 6.3520 Accuracy 0.2712.
[2021-08-16 13:41:55,951 INFO train.py line 404 34387] Epoch: [1/50][20/11134] Data 0.000 (0.046) Batch 0.458 (0.524) Remain 81:04:28 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3041 FinalLoss 2.5996 Loss 3.9037 Accuracy 0.0000.
[2021-08-16 13:42:00,536 INFO train.py line 404 34387] Epoch: [1/50][30/11134] Data 0.000 (0.031) Batch 0.464 (0.502) Remain 77:41:01 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.4762 FinalLoss 2.7216 Loss 4.1978 Accuracy 0.1985.
[2021-08-16 13:42:05,016 INFO train.py line 404 34387] Epoch: [1/50][40/11134] Data 0.000 (0.023) Batch 0.443 (0.489) Remain 75:34:39 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.9213 FinalLoss 2.9439 Loss 4.8653 Accuracy 0.0022.
[2021-08-16 13:42:09,354 INFO train.py line 404 34387] Epoch: [1/50][50/11134] Data 0.000 (0.019) Batch 0.430 (0.478) Remain 73:52:39 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3698 FinalLoss 2.2716 Loss 3.6415 Accuracy 0.3121.
[2021-08-16 13:42:13,693 INFO train.py line 404 34387] Epoch: [1/50][60/11134] Data 0.000 (0.016) Batch 0.434 (0.470) Remain 72:44:41 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1811 FinalLoss 1.5288 Loss 2.7098 Accuracy 0.2534.
[2021-08-16 13:42:18,093 INFO train.py line 404 34387] Epoch: [1/50][70/11134] Data 0.000 (0.014) Batch 0.436 (0.466) Remain 72:04:18 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3603 FinalLoss 2.2345 Loss 3.5948 Accuracy 0.1033.
[2021-08-16 13:42:22,459 INFO train.py line 404 34387] Epoch: [1/50][80/11134] Data 0.001 (0.012) Batch 0.443 (0.462) Remain 71:29:57 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.9852 FinalLoss 1.8379 Loss 2.8231 Accuracy 0.1762.
[2021-08-16 13:42:26,894 INFO train.py line 404 34387] Epoch: [1/50][90/11134] Data 0.000 (0.011) Batch 0.442 (0.460) Remain 71:10:22 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2670 FinalLoss 1.7410 Loss 3.0080 Accuracy 0.5093.
[2021-08-16 13:42:31,337 INFO train.py line 404 34387] Epoch: [1/50][100/11134] Data 0.000 (0.010) Batch 0.448 (0.459) Remain 70:55:24 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1950 FinalLoss 2.5355 Loss 3.7305 Accuracy 0.5194.
[2021-08-16 13:42:35,810 INFO train.py line 404 34387] Epoch: [1/50][110/11134] Data 0.000 (0.009) Batch 0.445 (0.458) Remain 70:45:42 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.1078 FinalLoss 2.5912 Loss 4.6991 Accuracy 0.0602.
[2021-08-16 13:42:40,195 INFO train.py line 404 34387] Epoch: [1/50][120/11134] Data 0.000 (0.008) Batch 0.439 (0.456) Remain 70:30:48 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.7995 FinalLoss 3.8212 Loss 5.6207 Accuracy 0.0527.
[2021-08-16 13:42:44,666 INFO train.py line 404 34387] Epoch: [1/50][130/11134] Data 0.001 (0.008) Batch 0.475 (0.455) Remain 70:24:16 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.9591 FinalLoss 2.8220 Loss 4.7811 Accuracy 0.0123.
[2021-08-16 13:42:49,175 INFO train.py line 404 34387] Epoch: [1/50][140/11134] Data 0.000 (0.007) Batch 0.453 (0.455) Remain 70:21:13 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.6016 FinalLoss 2.4701 Loss 4.0716 Accuracy 0.4707.
[2021-08-16 13:42:53,635 INFO train.py line 404 34387] Epoch: [1/50][150/11134] Data 0.000 (0.007) Batch 0.441 (0.454) Remain 70:15:34 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.5330 FinalLoss 2.6253 Loss 4.1583 Accuracy 0.0816.
[2021-08-16 13:42:58,093 INFO train.py line 404 34387] Epoch: [1/50][160/11134] Data 0.000 (0.006) Batch 0.435 (0.454) Remain 70:10:25 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.5738 FinalLoss 3.1311 Loss 4.7048 Accuracy 0.2208.
[2021-08-16 13:43:02,481 INFO train.py line 404 34387] Epoch: [1/50][170/11134] Data 0.000 (0.006) Batch 0.432 (0.453) Remain 70:02:08 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2956 FinalLoss 2.3680 Loss 3.6636 Accuracy 0.1467.
[2021-08-16 13:43:06,854 INFO train.py line 404 34387] Epoch: [1/50][180/11134] Data 0.000 (0.006) Batch 0.438 (0.452) Remain 69:53:57 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.1471 FinalLoss 2.6863 Loss 4.8334 Accuracy 0.3574.
[2021-08-16 13:43:11,240 INFO train.py line 404 34387] Epoch: [1/50][190/11134] Data 0.000 (0.005) Batch 0.436 (0.451) Remain 69:47:14 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3994 FinalLoss 2.0155 Loss 3.4149 Accuracy 0.5467.
[2021-08-16 13:43:15,626 INFO train.py line 404 34387] Epoch: [1/50][200/11134] Data 0.000 (0.005) Batch 0.438 (0.451) Remain 69:41:13 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3985 FinalLoss 2.2922 Loss 3.6907 Accuracy 0.2464.
[2021-08-16 13:43:19,972 INFO train.py line 404 34387] Epoch: [1/50][210/11134] Data 0.000 (0.005) Batch 0.437 (0.450) Remain 69:33:59 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.5389 FinalLoss 2.9367 Loss 4.4756 Accuracy 0.0000.
[2021-08-16 13:43:24,377 INFO train.py line 404 34387] Epoch: [1/50][220/11134] Data 0.000 (0.005) Batch 0.446 (0.450) Remain 69:29:54 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.4376 FinalLoss 2.4369 Loss 3.8745 Accuracy 0.3331.
[2021-08-16 13:43:28,776 INFO train.py line 404 34387] Epoch: [1/50][230/11134] Data 0.000 (0.004) Batch 0.437 (0.449) Remain 69:25:52 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.7511 FinalLoss 1.5723 Loss 3.3234 Accuracy 0.0901.
[2021-08-16 13:43:33,207 INFO train.py line 404 34387] Epoch: [1/50][240/11134] Data 0.000 (0.004) Batch 0.441 (0.449) Remain 69:23:29 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.8288 FinalLoss 2.7171 Loss 4.5458 Accuracy 0.0000.
[2021-08-16 13:43:37,615 INFO train.py line 404 34387] Epoch: [1/50][250/11134] Data 0.000 (0.004) Batch 0.441 (0.449) Remain 69:20:23 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.6246 FinalLoss 3.0870 Loss 4.7117 Accuracy 0.2876.
[2021-08-16 13:43:42,015 INFO train.py line 404 34387] Epoch: [1/50][260/11134] Data 0.000 (0.004) Batch 0.460 (0.448) Remain 69:17:13 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3587 FinalLoss 2.1987 Loss 3.5575 Accuracy 0.1534.
[2021-08-16 13:43:46,408 INFO train.py line 404 34387] Epoch: [1/50][270/11134] Data 0.000 (0.004) Batch 0.433 (0.448) Remain 69:14:05 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.6425 FinalLoss 3.3426 Loss 5.9851 Accuracy 0.0000.
[2021-08-16 13:43:50,811 INFO train.py line 404 34387] Epoch: [1/50][280/11134] Data 0.000 (0.004) Batch 0.433 (0.448) Remain 69:11:28 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.7713 FinalLoss 2.5098 Loss 4.2811 Accuracy 0.0022.
[2021-08-16 13:43:55,164 INFO train.py line 404 34387] Epoch: [1/50][290/11134] Data 0.000 (0.004) Batch 0.434 (0.447) Remain 69:07:26 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1183 FinalLoss 1.7739 Loss 2.8922 Accuracy 0.1032.
[2021-08-16 13:43:59,541 INFO train.py line 404 34387] Epoch: [1/50][300/11134] Data 0.000 (0.004) Batch 0.436 (0.447) Remain 69:04:26 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2018 FinalLoss 1.7992 Loss 3.0011 Accuracy 0.1387.
[2021-08-16 13:44:03,899 INFO train.py line 404 34387] Epoch: [1/50][310/11134] Data 0.000 (0.003) Batch 0.433 (0.447) Remain 69:01:01 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.0422 FinalLoss 1.8174 Loss 2.8596 Accuracy 0.0000.
[2021-08-16 13:44:08,321 INFO train.py line 404 34387] Epoch: [1/50][320/11134] Data 0.000 (0.003) Batch 0.443 (0.446) Remain 68:59:41 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1704 FinalLoss 1.6980 Loss 2.8684 Accuracy 0.4856.
[2021-08-16 13:44:12,769 INFO train.py line 404 34387] Epoch: [1/50][330/11134] Data 0.000 (0.003) Batch 0.442 (0.446) Remain 68:59:09 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.7535 FinalLoss 3.3933 Loss 6.1469 Accuracy 0.0000.
[2021-08-16 13:44:17,215 INFO train.py line 404 34387] Epoch: [1/50][340/11134] Data 0.000 (0.003) Batch 0.439 (0.446) Remain 68:58:35 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1200 FinalLoss 2.5649 Loss 3.6848 Accuracy 0.5482.
[2021-08-16 13:44:21,606 INFO train.py line 404 34387] Epoch: [1/50][350/11134] Data 0.000 (0.003) Batch 0.436 (0.446) Remain 68:56:37 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.9767 FinalLoss 2.8143 Loss 4.7911 Accuracy 0.1695.
[2021-08-16 13:44:26,038 INFO train.py line 404 34387] Epoch: [1/50][360/11134] Data 0.001 (0.003) Batch 0.444 (0.446) Remain 68:55:46 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.6400 FinalLoss 2.2408 Loss 3.8808 Accuracy 0.0429.
[2021-08-16 13:44:30,430 INFO train.py line 404 34387] Epoch: [1/50][370/11134] Data 0.000 (0.003) Batch 0.431 (0.446) Remain 68:53:59 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.4424 FinalLoss 2.5104 Loss 3.9528 Accuracy 0.2123.
[2021-08-16 13:44:34,865 INFO train.py line 404 34387] Epoch: [1/50][380/11134] Data 0.000 (0.003) Batch 0.443 (0.446) Remain 68:53:20 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3785 FinalLoss 2.4542 Loss 3.8327 Accuracy 0.4446.
[2021-08-16 13:44:39,257 INFO train.py line 404 34387] Epoch: [1/50][390/11134] Data 0.000 (0.003) Batch 0.433 (0.446) Remain 68:51:42 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.0629 FinalLoss 2.1120 Loss 4.1750 Accuracy 0.5002.
[2021-08-16 13:44:43,713 INFO train.py line 404 34387] Epoch: [1/50][400/11134] Data 0.000 (0.003) Batch 0.441 (0.446) Remain 68:51:37 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1650 FinalLoss 1.7254 Loss 2.8904 Accuracy 0.5221.
[2021-08-16 13:44:48,091 INFO train.py line 404 34387] Epoch: [1/50][410/11134] Data 0.000 (0.003) Batch 0.435 (0.445) Remain 68:49:47 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.9285 FinalLoss 3.1403 Loss 5.0688 Accuracy 0.0542.
[2021-08-16 13:44:52,500 INFO train.py line 404 34387] Epoch: [1/50][420/11134] Data 0.001 (0.003) Batch 0.460 (0.445) Remain 68:48:43 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2889 FinalLoss 2.1098 Loss 3.3987 Accuracy 0.1998.
[2021-08-16 13:44:56,946 INFO train.py line 404 34387] Epoch: [1/50][430/11134] Data 0.000 (0.003) Batch 0.450 (0.445) Remain 68:48:29 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.4326 FinalLoss 2.5013 Loss 3.9339 Accuracy 0.2415.
[2021-08-16 13:45:01,427 INFO train.py line 404 34387] Epoch: [1/50][440/11134] Data 0.000 (0.003) Batch 0.450 (0.445) Remain 68:49:00 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.6745 FinalLoss 1.9876 Loss 3.6620 Accuracy 0.2809.
[2021-08-16 13:45:05,915 INFO train.py line 404 34387] Epoch: [1/50][450/11134] Data 0.000 (0.003) Batch 0.439 (0.445) Remain 68:49:37 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.6759 FinalLoss 3.5198 Loss 5.1958 Accuracy 0.0000.
[2021-08-16 13:45:10,309 INFO train.py line 404 34387] Epoch: [1/50][460/11134] Data 0.000 (0.002) Batch 0.437 (0.445) Remain 68:48:20 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.9369 FinalLoss 2.8517 Loss 3.7887 Accuracy 0.0000.
[2021-08-16 13:45:14,812 INFO train.py line 404 34387] Epoch: [1/50][470/11134] Data 0.001 (0.002) Batch 0.443 (0.445) Remain 68:49:15 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.4094 FinalLoss 2.1544 Loss 3.5638 Accuracy 0.2066.
[2021-08-16 13:45:19,244 INFO train.py line 404 34387] Epoch: [1/50][480/11134] Data 0.000 (0.002) Batch 0.446 (0.445) Remain 68:48:44 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.0260 FinalLoss 1.9798 Loss 3.0058 Accuracy 0.2649.
[2021-08-16 13:45:23,700 INFO train.py line 404 34387] Epoch: [1/50][490/11134] Data 0.000 (0.002) Batch 0.444 (0.445) Remain 68:48:42 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3884 FinalLoss 0.7465 Loss 2.1349 Accuracy 1.0000.
[2021-08-16 13:45:28,108 INFO train.py line 404 34387] Epoch: [1/50][500/11134] Data 0.000 (0.002) Batch 0.446 (0.445) Remain 68:47:47 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.4746 FinalLoss 1.3997 Loss 1.8743 Accuracy 0.2699.
[2021-08-16 13:45:32,535 INFO train.py line 404 34387] Epoch: [1/50][510/11134] Data 0.000 (0.002) Batch 0.443 (0.445) Remain 68:47:14 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.5177 FinalLoss 2.1365 Loss 3.6543 Accuracy 0.0000.
[2021-08-16 13:45:36,947 INFO train.py line 404 34387] Epoch: [1/50][520/11134] Data 0.000 (0.002) Batch 0.443 (0.445) Remain 68:46:27 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2228 FinalLoss 2.0238 Loss 3.2466 Accuracy 0.3617.
[2021-08-16 13:45:41,384 INFO train.py line 404 34387] Epoch: [1/50][530/11134] Data 0.000 (0.002) Batch 0.438 (0.445) Remain 68:46:07 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.8642 FinalLoss 1.7713 Loss 2.6355 Accuracy 0.0000.
[2021-08-16 13:45:45,802 INFO train.py line 404 34387] Epoch: [1/50][540/11134] Data 0.000 (0.002) Batch 0.464 (0.445) Remain 68:45:28 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.5904 FinalLoss 2.2726 Loss 3.8630 Accuracy 0.1168.
[2021-08-16 13:45:50,265 INFO train.py line 404 34387] Epoch: [1/50][550/11134] Data 0.000 (0.002) Batch 0.444 (0.445) Remain 68:45:36 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.7165 FinalLoss 2.8632 Loss 4.5796 Accuracy 0.1717.
[2021-08-16 13:45:54,718 INFO train.py line 404 34387] Epoch: [1/50][560/11134] Data 0.000 (0.002) Batch 0.443 (0.445) Remain 68:45:33 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.6187 FinalLoss 2.3799 Loss 3.9986 Accuracy 0.4661.
[2021-08-16 13:45:59,170 INFO train.py line 404 34387] Epoch: [1/50][570/11134] Data 0.000 (0.002) Batch 0.441 (0.445) Remain 68:45:31 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.9729 FinalLoss 1.9634 Loss 2.9363 Accuracy 0.2288.
[2021-08-16 13:46:03,579 INFO train.py line 404 34387] Epoch: [1/50][580/11134] Data 0.000 (0.002) Batch 0.437 (0.445) Remain 68:44:46 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3900 FinalLoss 0.8930 Loss 2.2830 Accuracy 1.0000.
[2021-08-16 13:46:08,037 INFO train.py line 404 34387] Epoch: [1/50][590/11134] Data 0.000 (0.002) Batch 0.444 (0.445) Remain 68:44:49 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.4730 FinalLoss 1.6217 Loss 2.0947 Accuracy 0.9400.
[2021-08-16 13:46:12,481 INFO train.py line 404 34387] Epoch: [1/50][600/11134] Data 0.000 (0.002) Batch 0.442 (0.445) Remain 68:44:38 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3871 FinalLoss 2.7187 Loss 4.1059 Accuracy 0.2726.
[2021-08-16 13:46:16,926 INFO train.py line 404 34387] Epoch: [1/50][610/11134] Data 0.000 (0.002) Batch 0.442 (0.445) Remain 68:44:29 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.4289 FinalLoss 2.3520 Loss 3.7809 Accuracy 0.0724.
[2021-08-16 13:46:21,374 INFO train.py line 404 34387] Epoch: [1/50][620/11134] Data 0.000 (0.002) Batch 0.447 (0.445) Remain 68:44:23 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2056 FinalLoss 1.9841 Loss 3.1896 Accuracy 0.4603.
[2021-08-16 13:46:25,869 INFO train.py line 404 34387] Epoch: [1/50][630/11134] Data 0.000 (0.002) Batch 0.452 (0.445) Remain 68:44:58 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1753 FinalLoss 2.1837 Loss 3.3590 Accuracy 0.0000.
[2021-08-16 13:46:30,370 INFO train.py line 404 34387] Epoch: [1/50][640/11134] Data 0.000 (0.002) Batch 0.446 (0.445) Remain 68:45:37 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.4884 FinalLoss 2.3822 Loss 3.8706 Accuracy 0.4814.
[2021-08-16 13:46:34,829 INFO train.py line 404 34387] Epoch: [1/50][650/11134] Data 0.000 (0.002) Batch 0.445 (0.445) Remain 68:45:39 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.4525 FinalLoss 3.9008 Loss 5.3533 Accuracy 0.1980.
[2021-08-16 13:46:39,266 INFO train.py line 404 34387] Epoch: [1/50][660/11134] Data 0.000 (0.002) Batch 0.444 (0.445) Remain 68:45:21 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.3269 FinalLoss 2.4849 Loss 4.8118 Accuracy 0.0247.
[2021-08-16 13:46:43,717 INFO train.py line 404 34387] Epoch: [1/50][670/11134] Data 0.000 (0.002) Batch 0.442 (0.445) Remain 68:45:17 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.5046 FinalLoss 2.1646 Loss 3.6692 Accuracy 0.0000.
[2021-08-16 13:46:48,165 INFO train.py line 404 34387] Epoch: [1/50][680/11134] Data 0.000 (0.002) Batch 0.446 (0.445) Remain 68:45:09 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.5442 FinalLoss 2.4619 Loss 4.0061 Accuracy 0.0000.
[2021-08-16 13:46:52,611 INFO train.py line 404 34387] Epoch: [1/50][690/11134] Data 0.000 (0.002) Batch 0.453 (0.445) Remain 68:45:01 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3234 FinalLoss 2.7271 Loss 4.0506 Accuracy 0.3641.
[2021-08-16 13:46:57,065 INFO train.py line 404 34387] Epoch: [1/50][700/11134] Data 0.000 (0.002) Batch 0.443 (0.445) Remain 68:44:58 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3752 FinalLoss 2.3810 Loss 3.7562 Accuracy 0.2526.
[2021-08-16 13:47:01,508 INFO train.py line 404 34387] Epoch: [1/50][710/11134] Data 0.000 (0.002) Batch 0.438 (0.445) Remain 68:44:47 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.5383 FinalLoss 2.2835 Loss 3.8218 Accuracy 0.4996.
[2021-08-16 13:47:05,984 INFO train.py line 404 34387] Epoch: [1/50][720/11134] Data 0.000 (0.002) Batch 0.445 (0.445) Remain 68:45:02 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.4711 FinalLoss 2.2784 Loss 2.7495 Accuracy 0.2799.
[2021-08-16 13:47:10,423 INFO train.py line 404 34387] Epoch: [1/50][730/11134] Data 0.000 (0.002) Batch 0.441 (0.445) Remain 68:44:48 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2853 FinalLoss 1.7163 Loss 3.0016 Accuracy 0.4092.
[2021-08-16 13:47:14,895 INFO train.py line 404 34387] Epoch: [1/50][740/11134] Data 0.000 (0.002) Batch 0.450 (0.445) Remain 68:44:59 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.8706 FinalLoss 2.6512 Loss 4.5218 Accuracy 0.0810.
[2021-08-16 13:47:19,356 INFO train.py line 404 34387] Epoch: [1/50][750/11134] Data 0.000 (0.002) Batch 0.439 (0.445) Remain 68:45:01 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2029 FinalLoss 2.0406 Loss 3.2435 Accuracy 0.1246.
[2021-08-16 13:47:23,814 INFO train.py line 404 34387] Epoch: [1/50][760/11134] Data 0.000 (0.002) Batch 0.445 (0.445) Remain 68:45:01 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.6191 FinalLoss 2.6377 Loss 4.2568 Accuracy 0.3866.
[2021-08-16 13:47:28,271 INFO train.py line 404 34387] Epoch: [1/50][770/11134] Data 0.000 (0.002) Batch 0.444 (0.445) Remain 68:45:01 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.6191 FinalLoss 1.9460 Loss 2.5651 Accuracy 0.0000.
[2021-08-16 13:47:32,716 INFO train.py line 404 34387] Epoch: [1/50][780/11134] Data 0.000 (0.002) Batch 0.446 (0.445) Remain 68:44:51 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3176 FinalLoss 2.0726 Loss 3.3901 Accuracy 0.3394.
[2021-08-16 13:47:37,190 INFO train.py line 404 34387] Epoch: [1/50][790/11134] Data 0.001 (0.002) Batch 0.447 (0.445) Remain 68:45:02 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.8148 FinalLoss 1.8500 Loss 2.6648 Accuracy 0.7156.
[2021-08-16 13:47:41,653 INFO train.py line 404 34387] Epoch: [1/50][800/11134] Data 0.000 (0.002) Batch 0.444 (0.445) Remain 68:45:05 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.5808 FinalLoss 2.4740 Loss 4.0548 Accuracy 0.1144.
[2021-08-16 13:47:46,170 INFO train.py line 404 34387] Epoch: [1/50][810/11134] Data 0.000 (0.002) Batch 0.444 (0.445) Remain 68:45:45 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.0939 FinalLoss 2.5968 Loss 3.6907 Accuracy 0.2771.
[2021-08-16 13:47:50,627 INFO train.py line 404 34387] Epoch: [1/50][820/11134] Data 0.000 (0.002) Batch 0.444 (0.445) Remain 68:45:43 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 3.3481 FinalLoss 3.4132 Loss 6.7613 Accuracy 0.0628.
[2021-08-16 13:47:55,080 INFO train.py line 404 34387] Epoch: [1/50][830/11134] Data 0.000 (0.002) Batch 0.447 (0.445) Remain 68:45:39 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1288 FinalLoss 1.8862 Loss 3.0151 Accuracy 0.2820.
[2021-08-16 13:47:59,542 INFO train.py line 404 34387] Epoch: [1/50][840/11134] Data 0.000 (0.002) Batch 0.451 (0.445) Remain 68:45:40 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.6030 FinalLoss 2.9935 Loss 4.5965 Accuracy 0.3344.
[2021-08-16 13:48:04,034 INFO train.py line 404 34387] Epoch: [1/50][850/11134] Data 0.000 (0.002) Batch 0.447 (0.445) Remain 68:46:01 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.7201 FinalLoss 1.9270 Loss 3.6472 Accuracy 0.5677.
[2021-08-16 13:48:08,518 INFO train.py line 404 34387] Epoch: [1/50][860/11134] Data 0.000 (0.002) Batch 0.449 (0.445) Remain 68:46:16 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3860 FinalLoss 1.9059 Loss 3.2920 Accuracy 0.4910.
[2021-08-16 13:48:13,008 INFO train.py line 404 34387] Epoch: [1/50][870/11134] Data 0.000 (0.002) Batch 0.454 (0.445) Remain 68:46:34 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.9220 FinalLoss 1.6483 Loss 2.5702 Accuracy 0.6863.
[2021-08-16 13:48:17,503 INFO train.py line 404 34387] Epoch: [1/50][880/11134] Data 0.000 (0.002) Batch 0.445 (0.445) Remain 68:46:55 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.8363 FinalLoss 3.2620 Loss 5.0983 Accuracy 0.0263.
[2021-08-16 13:48:21,976 INFO train.py line 404 34387] Epoch: [1/50][890/11134] Data 0.000 (0.002) Batch 0.448 (0.446) Remain 68:47:02 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3070 FinalLoss 1.6259 Loss 2.9329 Accuracy 0.1249.
[2021-08-16 13:48:26,496 INFO train.py line 404 34387] Epoch: [1/50][900/11134] Data 0.000 (0.001) Batch 0.446 (0.446) Remain 68:47:38 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.8482 FinalLoss 3.0037 Loss 4.8519 Accuracy 0.2569.
[2021-08-16 13:48:31,039 INFO train.py line 404 34387] Epoch: [1/50][910/11134] Data 0.000 (0.001) Batch 0.451 (0.446) Remain 68:48:27 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.1857 FinalLoss 2.7592 Loss 4.9449 Accuracy 0.4474.
[2021-08-16 13:48:35,590 INFO train.py line 404 34387] Epoch: [1/50][920/11134] Data 0.001 (0.001) Batch 0.456 (0.446) Remain 68:49:19 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.7413 FinalLoss 2.6087 Loss 4.3500 Accuracy 0.0585.
[2021-08-16 13:48:40,129 INFO train.py line 404 34387] Epoch: [1/50][930/11134] Data 0.000 (0.001) Batch 0.451 (0.446) Remain 68:50:03 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.7038 FinalLoss 2.5617 Loss 4.2655 Accuracy 0.0764.
[2021-08-16 13:48:44,654 INFO train.py line 404 34387] Epoch: [1/50][940/11134] Data 0.000 (0.001) Batch 0.455 (0.446) Remain 68:50:38 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.7089 FinalLoss 2.6333 Loss 4.3422 Accuracy 0.1380.
[2021-08-16 13:48:49,125 INFO train.py line 404 34387] Epoch: [1/50][950/11134] Data 0.000 (0.001) Batch 0.448 (0.446) Remain 68:50:40 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1911 FinalLoss 1.8770 Loss 3.0681 Accuracy 0.5113.
[2021-08-16 13:48:53,641 INFO train.py line 404 34387] Epoch: [1/50][960/11134] Data 0.000 (0.001) Batch 0.453 (0.446) Remain 68:51:08 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.5177 FinalLoss 2.7894 Loss 4.3071 Accuracy 0.0097.
[2021-08-16 13:48:58,145 INFO train.py line 404 34387] Epoch: [1/50][970/11134] Data 0.001 (0.001) Batch 0.449 (0.446) Remain 68:51:29 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3997 FinalLoss 2.2693 Loss 3.6690 Accuracy 0.0000.
[2021-08-16 13:49:02,617 INFO train.py line 404 34387] Epoch: [1/50][980/11134] Data 0.000 (0.001) Batch 0.445 (0.446) Remain 68:51:31 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1512 FinalLoss 1.7244 Loss 2.8756 Accuracy 0.5570.
[2021-08-16 13:49:07,138 INFO train.py line 404 34387] Epoch: [1/50][990/11134] Data 0.000 (0.001) Batch 0.451 (0.446) Remain 68:52:00 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2323 FinalLoss 1.6534 Loss 2.8857 Accuracy 0.2434.
[2021-08-16 13:49:11,671 INFO train.py line 404 34387] Epoch: [1/50][1000/11134] Data 0.000 (0.001) Batch 0.452 (0.446) Remain 68:52:35 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.7756 FinalLoss 1.1093 Loss 1.8849 Accuracy 0.8780.
[2021-08-16 13:49:16,210 INFO train.py line 404 34387] Epoch: [1/50][1010/11134] Data 0.000 (0.001) Batch 0.455 (0.446) Remain 68:53:14 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3168 FinalLoss 2.1713 Loss 3.4881 Accuracy 0.6497.
[2021-08-16 13:49:20,713 INFO train.py line 404 34387] Epoch: [1/50][1020/11134] Data 0.000 (0.001) Batch 0.449 (0.446) Remain 68:53:31 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2316 FinalLoss 1.6224 Loss 2.8540 Accuracy 0.2718.
[2021-08-16 13:49:25,242 INFO train.py line 404 34387] Epoch: [1/50][1030/11134] Data 0.000 (0.001) Batch 0.466 (0.446) Remain 68:54:02 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.7873 FinalLoss 2.1616 Loss 2.9489 Accuracy 0.3048.
[2021-08-16 13:49:29,774 INFO train.py line 404 34387] Epoch: [1/50][1040/11134] Data 0.000 (0.001) Batch 0.454 (0.446) Remain 68:54:34 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.4898 FinalLoss 2.7843 Loss 4.2741 Accuracy 0.0349.
[2021-08-16 13:49:34,280 INFO train.py line 404 34387] Epoch: [1/50][1050/11134] Data 0.000 (0.001) Batch 0.446 (0.446) Remain 68:54:52 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.1675 FinalLoss 3.6866 Loss 5.8541 Accuracy 0.2737.
[2021-08-16 13:49:38,813 INFO train.py line 404 34387] Epoch: [1/50][1060/11134] Data 0.000 (0.001) Batch 0.446 (0.447) Remain 68:55:23 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.5553 FinalLoss 2.0986 Loss 3.6538 Accuracy 0.1597.
[2021-08-16 13:49:43,323 INFO train.py line 404 34387] Epoch: [1/50][1070/11134] Data 0.000 (0.001) Batch 0.452 (0.447) Remain 68:55:41 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3722 FinalLoss 4.4256 Loss 5.7978 Accuracy 0.0085.
[2021-08-16 13:49:47,832 INFO train.py line 404 34387] Epoch: [1/50][1080/11134] Data 0.000 (0.001) Batch 0.458 (0.447) Remain 68:55:59 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2374 FinalLoss 2.5958 Loss 3.8332 Accuracy 0.0135.
[2021-08-16 13:49:52,334 INFO train.py line 404 34387] Epoch: [1/50][1090/11134] Data 0.000 (0.001) Batch 0.455 (0.447) Remain 68:56:13 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.8181 FinalLoss 1.4390 Loss 2.2570 Accuracy 0.5842.
[2021-08-16 13:49:56,837 INFO train.py line 404 34387] Epoch: [1/50][1100/11134] Data 0.000 (0.001) Batch 0.442 (0.447) Remain 68:56:27 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.7727 FinalLoss 3.4040 Loss 5.1767 Accuracy 0.0110.
[2021-08-16 13:50:01,392 INFO train.py line 404 34387] Epoch: [1/50][1110/11134] Data 0.000 (0.001) Batch 0.452 (0.447) Remain 68:57:06 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.4383 FinalLoss 1.9205 Loss 3.3587 Accuracy 0.2505.
[2021-08-16 13:50:05,890 INFO train.py line 404 34387] Epoch: [1/50][1120/11134] Data 0.000 (0.001) Batch 0.448 (0.447) Remain 68:57:17 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1951 FinalLoss 2.5721 Loss 3.7672 Accuracy 0.3405.
[2021-08-16 13:50:10,392 INFO train.py line 404 34387] Epoch: [1/50][1130/11134] Data 0.000 (0.001) Batch 0.448 (0.447) Remain 68:57:29 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.6424 FinalLoss 2.9030 Loss 4.5455 Accuracy 0.1082.
[2021-08-16 13:50:14,906 INFO train.py line 404 34387] Epoch: [1/50][1140/11134] Data 0.000 (0.001) Batch 0.456 (0.447) Remain 68:57:46 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2740 FinalLoss 2.7361 Loss 4.0101 Accuracy 0.3646.
[2021-08-16 13:50:19,442 INFO train.py line 404 34387] Epoch: [1/50][1150/11134] Data 0.000 (0.001) Batch 0.451 (0.447) Remain 68:58:15 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.7430 FinalLoss 1.9771 Loss 3.7201 Accuracy 0.4905.
[2021-08-16 13:50:23,962 INFO train.py line 404 34387] Epoch: [1/50][1160/11134] Data 0.000 (0.001) Batch 0.455 (0.447) Remain 68:58:34 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2242 FinalLoss 2.4018 Loss 3.6260 Accuracy 0.2414.
[2021-08-16 13:50:28,512 INFO train.py line 404 34387] Epoch: [1/50][1170/11134] Data 0.000 (0.001) Batch 0.454 (0.447) Remain 68:59:08 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.7080 FinalLoss 2.0300 Loss 2.7380 Accuracy 0.2529.
[2021-08-16 13:50:33,047 INFO train.py line 404 34387] Epoch: [1/50][1180/11134] Data 0.000 (0.001) Batch 0.447 (0.447) Remain 68:59:34 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.9407 FinalLoss 2.2272 Loss 3.1678 Accuracy 0.0000.
[2021-08-16 13:50:37,556 INFO train.py line 404 34387] Epoch: [1/50][1190/11134] Data 0.000 (0.001) Batch 0.450 (0.447) Remain 68:59:47 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2407 FinalLoss 2.0048 Loss 3.2456 Accuracy 0.5249.
[2021-08-16 13:50:42,020 INFO train.py line 404 34387] Epoch: [1/50][1200/11134] Data 0.000 (0.001) Batch 0.442 (0.447) Remain 68:59:39 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.7475 FinalLoss 3.4837 Loss 6.2313 Accuracy 0.1117.
[2021-08-16 13:50:46,498 INFO train.py line 404 34387] Epoch: [1/50][1210/11134] Data 0.000 (0.001) Batch 0.447 (0.447) Remain 68:59:38 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1380 FinalLoss 2.3439 Loss 3.4819 Accuracy 0.4917.
[2021-08-16 13:50:50,997 INFO train.py line 404 34387] Epoch: [1/50][1220/11134] Data 0.000 (0.001) Batch 0.455 (0.447) Remain 68:59:46 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.8836 FinalLoss 3.3178 Loss 6.2014 Accuracy 0.1806.
[2021-08-16 13:50:55,461 INFO train.py line 404 34387] Epoch: [1/50][1230/11134] Data 0.000 (0.001) Batch 0.439 (0.447) Remain 68:59:38 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3367 FinalLoss 2.2429 Loss 3.5796 Accuracy 0.5170.
[2021-08-16 13:50:59,926 INFO train.py line 404 34387] Epoch: [1/50][1240/11134] Data 0.000 (0.001) Batch 0.451 (0.447) Remain 68:59:30 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.8952 FinalLoss 3.9005 Loss 6.7957 Accuracy 0.1113.
[2021-08-16 13:51:04,434 INFO train.py line 404 34387] Epoch: [1/50][1250/11134] Data 0.000 (0.001) Batch 0.450 (0.447) Remain 68:59:42 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.0987 FinalLoss 3.0169 Loss 4.1155 Accuracy 0.0000.
[2021-08-16 13:51:08,929 INFO train.py line 404 34387] Epoch: [1/50][1260/11134] Data 0.000 (0.001) Batch 0.447 (0.447) Remain 68:59:48 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 3.1764 FinalLoss 3.2835 Loss 6.4600 Accuracy 0.0000.
[2021-08-16 13:51:13,456 INFO train.py line 404 34387] Epoch: [1/50][1270/11134] Data 0.001 (0.001) Batch 0.458 (0.447) Remain 69:00:08 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.6864 FinalLoss 2.3854 Loss 4.0718 Accuracy 0.1933.
[2021-08-16 13:51:18,014 INFO train.py line 404 34387] Epoch: [1/50][1280/11134] Data 0.000 (0.001) Batch 0.470 (0.447) Remain 69:00:40 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.5360 FinalLoss 1.6260 Loss 3.1620 Accuracy 0.7094.
[2021-08-16 13:51:22,532 INFO train.py line 404 34387] Epoch: [1/50][1290/11134] Data 0.000 (0.001) Batch 0.452 (0.447) Remain 69:00:55 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.0630 FinalLoss 1.5333 Loss 2.5963 Accuracy 0.6547.
[2021-08-16 13:51:27,030 INFO train.py line 404 34387] Epoch: [1/50][1300/11134] Data 0.000 (0.001) Batch 0.453 (0.447) Remain 69:01:01 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1016 FinalLoss 1.8319 Loss 2.9335 Accuracy 0.5452.
[2021-08-16 13:51:31,542 INFO train.py line 404 34387] Epoch: [1/50][1310/11134] Data 0.000 (0.001) Batch 0.447 (0.447) Remain 69:01:13 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.6814 FinalLoss 3.1562 Loss 4.8376 Accuracy 0.2167.
[2021-08-16 13:51:36,082 INFO train.py line 404 34387] Epoch: [1/50][1320/11134] Data 0.000 (0.001) Batch 0.450 (0.447) Remain 69:01:37 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.4985 FinalLoss 2.2382 Loss 3.7367 Accuracy 0.3413.
[2021-08-16 13:51:40,600 INFO train.py line 404 34387] Epoch: [1/50][1330/11134] Data 0.000 (0.001) Batch 0.448 (0.447) Remain 69:01:50 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.0348 FinalLoss 3.5870 Loss 5.6218 Accuracy 0.0000.
[2021-08-16 13:51:45,139 INFO train.py line 404 34387] Epoch: [1/50][1340/11134] Data 0.000 (0.001) Batch 0.454 (0.448) Remain 69:02:12 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2739 FinalLoss 1.8914 Loss 3.1653 Accuracy 0.4705.
[2021-08-16 13:51:49,674 INFO train.py line 404 34387] Epoch: [1/50][1350/11134] Data 0.001 (0.001) Batch 0.449 (0.448) Remain 69:02:33 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1109 FinalLoss 1.9550 Loss 3.0659 Accuracy 0.3048.
[2021-08-16 13:51:54,206 INFO train.py line 404 34387] Epoch: [1/50][1360/11134] Data 0.001 (0.001) Batch 0.454 (0.448) Remain 69:02:51 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.6413 FinalLoss 2.3996 Loss 4.0409 Accuracy 0.1414.
[2021-08-16 13:51:58,754 INFO train.py line 404 34387] Epoch: [1/50][1370/11134] Data 0.001 (0.001) Batch 0.464 (0.448) Remain 69:03:16 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2508 FinalLoss 2.2694 Loss 3.5202 Accuracy 0.0000.
[2021-08-16 13:52:03,205 INFO train.py line 404 34387] Epoch: [1/50][1380/11134] Data 0.001 (0.001) Batch 0.441 (0.448) Remain 69:03:01 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.9516 FinalLoss 0.8739 Loss 1.8255 Accuracy 0.9915.
[2021-08-16 13:52:07,681 INFO train.py line 404 34387] Epoch: [1/50][1390/11134] Data 0.000 (0.001) Batch 0.442 (0.448) Remain 69:02:56 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2609 FinalLoss 2.7621 Loss 4.0229 Accuracy 0.0000.
[2021-08-16 13:52:12,153 INFO train.py line 404 34387] Epoch: [1/50][1400/11134] Data 0.000 (0.001) Batch 0.443 (0.448) Remain 69:02:50 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.2209 FinalLoss nan Loss nan Accuracy 0.0000.
[2021-08-16 13:52:16,615 INFO train.py line 404 34387] Epoch: [1/50][1410/11134] Data 0.000 (0.001) Batch 0.448 (0.448) Remain 69:02:40 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.5167 FinalLoss nan Loss nan Accuracy 0.0000.
[2021-08-16 13:52:21,079 INFO train.py line 404 34387] Epoch: [1/50][1420/11134] Data 0.000 (0.001) Batch 0.445 (0.448) Remain 69:02:31 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.9679 FinalLoss nan Loss nan Accuracy 0.0000.
[2021-08-16 13:52:25,519 INFO train.py line 404 34387] Epoch: [1/50][1430/11134] Data 0.001 (0.001) Batch 0.439 (0.448) Remain 69:02:12 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.8107 FinalLoss nan Loss nan Accuracy 0.0000.
[2021-08-16 13:52:29,990 INFO train.py line 404 34387] Epoch: [1/50][1440/11134] Data 0.000 (0.001) Batch 0.440 (0.448) Remain 69:02:06 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.0621 FinalLoss nan Loss nan Accuracy 0.0000.
[2021-08-16 13:52:34,436 INFO train.py line 404 34387] Epoch: [1/50][1450/11134] Data 0.000 (0.001) Batch 0.443 (0.448) Remain 69:01:50 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.0649 FinalLoss nan Loss nan Accuracy 0.0000.
[2021-08-16 13:52:38,914 INFO train.py line 404 34387] Epoch: [1/50][1460/11134] Data 0.000 (0.001) Batch 0.453 (0.448) Remain 69:01:46 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.2776 FinalLoss nan Loss nan Accuracy 0.0000.
[2021-08-16 13:52:43,406 INFO train.py line 404 34387] Epoch: [1/50][1470/11134] Data 0.000 (0.001) Batch 0.449 (0.448) Remain 69:01:48 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.8996 FinalLoss nan Loss nan Accuracy 0.0000.
[2021-08-16 13:52:47,848 INFO train.py line 404 34387] Epoch: [1/50][1480/11134] Data 0.000 (0.001) Batch 0.437 (0.448) Remain 69:01:31 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 3.2841 FinalLoss nan Loss nan Accuracy 0.0000.
[2021-08-16 13:52:52,246 INFO train.py line 404 34387] Epoch: [1/50][1490/11134] Data 0.000 (0.001) Batch 0.441 (0.448) Remain 69:00:58 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.7820 FinalLoss nan Loss nan Accuracy 0.0000.
[2021-08-16 13:52:56,765 INFO train.py line 404 34387] Epoch: [1/50][1500/11134] Data 0.000 (0.001) Batch 0.449 (0.448) Remain 69:01:09 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.3175 FinalLoss nan Loss nan Accuracy 0.0000.
[2021-08-16 13:53:01,234 INFO train.py line 404 34387] Epoch: [1/50][1510/11134] Data 0.000 (0.001) Batch 0.441 (0.448) Remain 69:01:02 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.2982 FinalLoss nan Loss nan Accuracy 0.0000.
[2021-08-16 13:53:05,686 INFO train.py line 404 34387] Epoch: [1/50][1520/11134] Data 0.000 (0.001) Batch 0.442 (0.448) Remain 69:00:50 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.1052 FinalLoss nan Loss nan Accuracy 0.0000.
[2021-08-16 13:53:10,159 INFO train.py line 404 34387] Epoch: [1/50][1530/11134] Data 0.000 (0.001) Batch 0.460 (0.448) Remain 69:00:44 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.6419 FinalLoss nan Loss nan Accuracy 0.0000.
[2021-08-16 13:53:14,590 INFO train.py line 404 34387] Epoch: [1/50][1540/11134] Data 0.000 (0.001) Batch 0.438 (0.447) Remain 69:00:24 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.2729 FinalLoss nan Loss nan Accuracy 0.0000.
[2021-08-16 13:53:19,104 INFO train.py line 404 34387] Epoch: [1/50][1550/11134] Data 0.000 (0.001) Batch 0.456 (0.448) Remain 69:00:33 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.7142 FinalLoss nan Loss nan Accuracy 0.0000.
[2021-08-16 13:53:23,665 INFO train.py line 404 34387] Epoch: [1/50][1560/11134] Data 0.000 (0.001) Batch 0.446 (0.448) Remain 69:00:59 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.2909 FinalLoss nan Loss nan Accuracy 0.0000.
[2021-08-16 13:53:28,190 INFO train.py line 404 34387] Epoch: [1/50][1570/11134] Data 0.000 (0.001) Batch 0.443 (0.448) Remain 69:01:13 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.9410 FinalLoss nan Loss nan Accuracy 0.0000.
[2021-08-16 13:53:32,631 INFO train.py line 404 34387] Epoch: [1/50][1580/11134] Data 0.000 (0.001) Batch 0.439 (0.448) Remain 69:00:56 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.6594 FinalLoss nan Loss nan Accuracy 0.0000.
—
You are receiving this because you were mentioned.
Reply to this email directly, view it on GitHub
<#4>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/AB7WPDCKE4DHDFAWRGG46O3T5CTJFANCNFSM5CHBP22A>
.
Triage notifications on the go with GitHub Mobile for iOS
<https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675>
or Android
<https://play.google.com/store/apps/details?id=com.github.android&utm_campaign=notification-email>
.
|
Now I update the code(change batch size in config file), it should be ok
now.
Zhengzhe LIU ***@***.***> 于2021年8月17日周二 上午11:28写道:
… batch size should be 16
mtli77 ***@***.***> 于2021年8月16日周一 下午2:07写道:
> Hi, @liuzhengzhe <https://github.com/liuzhengzhe>
> Thanks for sharing the code.
> Considering my experiments environment:
> cudatoolkit 10.1.243, pytorch 1.4.0, V10.0.130, python 3.7
> But during the training phase, after about one thousand iterations, the
> accuracy was reported to be 0.000.
> So, what is wrong with it?
>
> [2021-08-16 13:41:51,361 INFO train.py line 404 34387] Epoch: [1/50][10/11134] Data 0.000 (0.092) Batch 0.455 (0.590) Remain 91:10:10 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.8626 FinalLoss 4.4894 Loss 6.3520 Accuracy 0.2712.
> [2021-08-16 13:41:55,951 INFO train.py line 404 34387] Epoch: [1/50][20/11134] Data 0.000 (0.046) Batch 0.458 (0.524) Remain 81:04:28 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3041 FinalLoss 2.5996 Loss 3.9037 Accuracy 0.0000.
> [2021-08-16 13:42:00,536 INFO train.py line 404 34387] Epoch: [1/50][30/11134] Data 0.000 (0.031) Batch 0.464 (0.502) Remain 77:41:01 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.4762 FinalLoss 2.7216 Loss 4.1978 Accuracy 0.1985.
> [2021-08-16 13:42:05,016 INFO train.py line 404 34387] Epoch: [1/50][40/11134] Data 0.000 (0.023) Batch 0.443 (0.489) Remain 75:34:39 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.9213 FinalLoss 2.9439 Loss 4.8653 Accuracy 0.0022.
> [2021-08-16 13:42:09,354 INFO train.py line 404 34387] Epoch: [1/50][50/11134] Data 0.000 (0.019) Batch 0.430 (0.478) Remain 73:52:39 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3698 FinalLoss 2.2716 Loss 3.6415 Accuracy 0.3121.
> [2021-08-16 13:42:13,693 INFO train.py line 404 34387] Epoch: [1/50][60/11134] Data 0.000 (0.016) Batch 0.434 (0.470) Remain 72:44:41 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1811 FinalLoss 1.5288 Loss 2.7098 Accuracy 0.2534.
> [2021-08-16 13:42:18,093 INFO train.py line 404 34387] Epoch: [1/50][70/11134] Data 0.000 (0.014) Batch 0.436 (0.466) Remain 72:04:18 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3603 FinalLoss 2.2345 Loss 3.5948 Accuracy 0.1033.
> [2021-08-16 13:42:22,459 INFO train.py line 404 34387] Epoch: [1/50][80/11134] Data 0.001 (0.012) Batch 0.443 (0.462) Remain 71:29:57 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.9852 FinalLoss 1.8379 Loss 2.8231 Accuracy 0.1762.
> [2021-08-16 13:42:26,894 INFO train.py line 404 34387] Epoch: [1/50][90/11134] Data 0.000 (0.011) Batch 0.442 (0.460) Remain 71:10:22 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2670 FinalLoss 1.7410 Loss 3.0080 Accuracy 0.5093.
> [2021-08-16 13:42:31,337 INFO train.py line 404 34387] Epoch: [1/50][100/11134] Data 0.000 (0.010) Batch 0.448 (0.459) Remain 70:55:24 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1950 FinalLoss 2.5355 Loss 3.7305 Accuracy 0.5194.
> [2021-08-16 13:42:35,810 INFO train.py line 404 34387] Epoch: [1/50][110/11134] Data 0.000 (0.009) Batch 0.445 (0.458) Remain 70:45:42 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.1078 FinalLoss 2.5912 Loss 4.6991 Accuracy 0.0602.
> [2021-08-16 13:42:40,195 INFO train.py line 404 34387] Epoch: [1/50][120/11134] Data 0.000 (0.008) Batch 0.439 (0.456) Remain 70:30:48 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.7995 FinalLoss 3.8212 Loss 5.6207 Accuracy 0.0527.
> [2021-08-16 13:42:44,666 INFO train.py line 404 34387] Epoch: [1/50][130/11134] Data 0.001 (0.008) Batch 0.475 (0.455) Remain 70:24:16 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.9591 FinalLoss 2.8220 Loss 4.7811 Accuracy 0.0123.
> [2021-08-16 13:42:49,175 INFO train.py line 404 34387] Epoch: [1/50][140/11134] Data 0.000 (0.007) Batch 0.453 (0.455) Remain 70:21:13 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.6016 FinalLoss 2.4701 Loss 4.0716 Accuracy 0.4707.
> [2021-08-16 13:42:53,635 INFO train.py line 404 34387] Epoch: [1/50][150/11134] Data 0.000 (0.007) Batch 0.441 (0.454) Remain 70:15:34 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.5330 FinalLoss 2.6253 Loss 4.1583 Accuracy 0.0816.
> [2021-08-16 13:42:58,093 INFO train.py line 404 34387] Epoch: [1/50][160/11134] Data 0.000 (0.006) Batch 0.435 (0.454) Remain 70:10:25 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.5738 FinalLoss 3.1311 Loss 4.7048 Accuracy 0.2208.
> [2021-08-16 13:43:02,481 INFO train.py line 404 34387] Epoch: [1/50][170/11134] Data 0.000 (0.006) Batch 0.432 (0.453) Remain 70:02:08 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2956 FinalLoss 2.3680 Loss 3.6636 Accuracy 0.1467.
> [2021-08-16 13:43:06,854 INFO train.py line 404 34387] Epoch: [1/50][180/11134] Data 0.000 (0.006) Batch 0.438 (0.452) Remain 69:53:57 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.1471 FinalLoss 2.6863 Loss 4.8334 Accuracy 0.3574.
> [2021-08-16 13:43:11,240 INFO train.py line 404 34387] Epoch: [1/50][190/11134] Data 0.000 (0.005) Batch 0.436 (0.451) Remain 69:47:14 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3994 FinalLoss 2.0155 Loss 3.4149 Accuracy 0.5467.
> [2021-08-16 13:43:15,626 INFO train.py line 404 34387] Epoch: [1/50][200/11134] Data 0.000 (0.005) Batch 0.438 (0.451) Remain 69:41:13 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3985 FinalLoss 2.2922 Loss 3.6907 Accuracy 0.2464.
> [2021-08-16 13:43:19,972 INFO train.py line 404 34387] Epoch: [1/50][210/11134] Data 0.000 (0.005) Batch 0.437 (0.450) Remain 69:33:59 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.5389 FinalLoss 2.9367 Loss 4.4756 Accuracy 0.0000.
> [2021-08-16 13:43:24,377 INFO train.py line 404 34387] Epoch: [1/50][220/11134] Data 0.000 (0.005) Batch 0.446 (0.450) Remain 69:29:54 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.4376 FinalLoss 2.4369 Loss 3.8745 Accuracy 0.3331.
> [2021-08-16 13:43:28,776 INFO train.py line 404 34387] Epoch: [1/50][230/11134] Data 0.000 (0.004) Batch 0.437 (0.449) Remain 69:25:52 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.7511 FinalLoss 1.5723 Loss 3.3234 Accuracy 0.0901.
> [2021-08-16 13:43:33,207 INFO train.py line 404 34387] Epoch: [1/50][240/11134] Data 0.000 (0.004) Batch 0.441 (0.449) Remain 69:23:29 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.8288 FinalLoss 2.7171 Loss 4.5458 Accuracy 0.0000.
> [2021-08-16 13:43:37,615 INFO train.py line 404 34387] Epoch: [1/50][250/11134] Data 0.000 (0.004) Batch 0.441 (0.449) Remain 69:20:23 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.6246 FinalLoss 3.0870 Loss 4.7117 Accuracy 0.2876.
> [2021-08-16 13:43:42,015 INFO train.py line 404 34387] Epoch: [1/50][260/11134] Data 0.000 (0.004) Batch 0.460 (0.448) Remain 69:17:13 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3587 FinalLoss 2.1987 Loss 3.5575 Accuracy 0.1534.
> [2021-08-16 13:43:46,408 INFO train.py line 404 34387] Epoch: [1/50][270/11134] Data 0.000 (0.004) Batch 0.433 (0.448) Remain 69:14:05 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.6425 FinalLoss 3.3426 Loss 5.9851 Accuracy 0.0000.
> [2021-08-16 13:43:50,811 INFO train.py line 404 34387] Epoch: [1/50][280/11134] Data 0.000 (0.004) Batch 0.433 (0.448) Remain 69:11:28 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.7713 FinalLoss 2.5098 Loss 4.2811 Accuracy 0.0022.
> [2021-08-16 13:43:55,164 INFO train.py line 404 34387] Epoch: [1/50][290/11134] Data 0.000 (0.004) Batch 0.434 (0.447) Remain 69:07:26 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1183 FinalLoss 1.7739 Loss 2.8922 Accuracy 0.1032.
> [2021-08-16 13:43:59,541 INFO train.py line 404 34387] Epoch: [1/50][300/11134] Data 0.000 (0.004) Batch 0.436 (0.447) Remain 69:04:26 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2018 FinalLoss 1.7992 Loss 3.0011 Accuracy 0.1387.
> [2021-08-16 13:44:03,899 INFO train.py line 404 34387] Epoch: [1/50][310/11134] Data 0.000 (0.003) Batch 0.433 (0.447) Remain 69:01:01 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.0422 FinalLoss 1.8174 Loss 2.8596 Accuracy 0.0000.
> [2021-08-16 13:44:08,321 INFO train.py line 404 34387] Epoch: [1/50][320/11134] Data 0.000 (0.003) Batch 0.443 (0.446) Remain 68:59:41 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1704 FinalLoss 1.6980 Loss 2.8684 Accuracy 0.4856.
> [2021-08-16 13:44:12,769 INFO train.py line 404 34387] Epoch: [1/50][330/11134] Data 0.000 (0.003) Batch 0.442 (0.446) Remain 68:59:09 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.7535 FinalLoss 3.3933 Loss 6.1469 Accuracy 0.0000.
> [2021-08-16 13:44:17,215 INFO train.py line 404 34387] Epoch: [1/50][340/11134] Data 0.000 (0.003) Batch 0.439 (0.446) Remain 68:58:35 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1200 FinalLoss 2.5649 Loss 3.6848 Accuracy 0.5482.
> [2021-08-16 13:44:21,606 INFO train.py line 404 34387] Epoch: [1/50][350/11134] Data 0.000 (0.003) Batch 0.436 (0.446) Remain 68:56:37 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.9767 FinalLoss 2.8143 Loss 4.7911 Accuracy 0.1695.
> [2021-08-16 13:44:26,038 INFO train.py line 404 34387] Epoch: [1/50][360/11134] Data 0.001 (0.003) Batch 0.444 (0.446) Remain 68:55:46 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.6400 FinalLoss 2.2408 Loss 3.8808 Accuracy 0.0429.
> [2021-08-16 13:44:30,430 INFO train.py line 404 34387] Epoch: [1/50][370/11134] Data 0.000 (0.003) Batch 0.431 (0.446) Remain 68:53:59 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.4424 FinalLoss 2.5104 Loss 3.9528 Accuracy 0.2123.
> [2021-08-16 13:44:34,865 INFO train.py line 404 34387] Epoch: [1/50][380/11134] Data 0.000 (0.003) Batch 0.443 (0.446) Remain 68:53:20 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3785 FinalLoss 2.4542 Loss 3.8327 Accuracy 0.4446.
> [2021-08-16 13:44:39,257 INFO train.py line 404 34387] Epoch: [1/50][390/11134] Data 0.000 (0.003) Batch 0.433 (0.446) Remain 68:51:42 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.0629 FinalLoss 2.1120 Loss 4.1750 Accuracy 0.5002.
> [2021-08-16 13:44:43,713 INFO train.py line 404 34387] Epoch: [1/50][400/11134] Data 0.000 (0.003) Batch 0.441 (0.446) Remain 68:51:37 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1650 FinalLoss 1.7254 Loss 2.8904 Accuracy 0.5221.
> [2021-08-16 13:44:48,091 INFO train.py line 404 34387] Epoch: [1/50][410/11134] Data 0.000 (0.003) Batch 0.435 (0.445) Remain 68:49:47 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.9285 FinalLoss 3.1403 Loss 5.0688 Accuracy 0.0542.
> [2021-08-16 13:44:52,500 INFO train.py line 404 34387] Epoch: [1/50][420/11134] Data 0.001 (0.003) Batch 0.460 (0.445) Remain 68:48:43 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2889 FinalLoss 2.1098 Loss 3.3987 Accuracy 0.1998.
> [2021-08-16 13:44:56,946 INFO train.py line 404 34387] Epoch: [1/50][430/11134] Data 0.000 (0.003) Batch 0.450 (0.445) Remain 68:48:29 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.4326 FinalLoss 2.5013 Loss 3.9339 Accuracy 0.2415.
> [2021-08-16 13:45:01,427 INFO train.py line 404 34387] Epoch: [1/50][440/11134] Data 0.000 (0.003) Batch 0.450 (0.445) Remain 68:49:00 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.6745 FinalLoss 1.9876 Loss 3.6620 Accuracy 0.2809.
> [2021-08-16 13:45:05,915 INFO train.py line 404 34387] Epoch: [1/50][450/11134] Data 0.000 (0.003) Batch 0.439 (0.445) Remain 68:49:37 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.6759 FinalLoss 3.5198 Loss 5.1958 Accuracy 0.0000.
> [2021-08-16 13:45:10,309 INFO train.py line 404 34387] Epoch: [1/50][460/11134] Data 0.000 (0.002) Batch 0.437 (0.445) Remain 68:48:20 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.9369 FinalLoss 2.8517 Loss 3.7887 Accuracy 0.0000.
> [2021-08-16 13:45:14,812 INFO train.py line 404 34387] Epoch: [1/50][470/11134] Data 0.001 (0.002) Batch 0.443 (0.445) Remain 68:49:15 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.4094 FinalLoss 2.1544 Loss 3.5638 Accuracy 0.2066.
> [2021-08-16 13:45:19,244 INFO train.py line 404 34387] Epoch: [1/50][480/11134] Data 0.000 (0.002) Batch 0.446 (0.445) Remain 68:48:44 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.0260 FinalLoss 1.9798 Loss 3.0058 Accuracy 0.2649.
> [2021-08-16 13:45:23,700 INFO train.py line 404 34387] Epoch: [1/50][490/11134] Data 0.000 (0.002) Batch 0.444 (0.445) Remain 68:48:42 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3884 FinalLoss 0.7465 Loss 2.1349 Accuracy 1.0000.
> [2021-08-16 13:45:28,108 INFO train.py line 404 34387] Epoch: [1/50][500/11134] Data 0.000 (0.002) Batch 0.446 (0.445) Remain 68:47:47 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.4746 FinalLoss 1.3997 Loss 1.8743 Accuracy 0.2699.
> [2021-08-16 13:45:32,535 INFO train.py line 404 34387] Epoch: [1/50][510/11134] Data 0.000 (0.002) Batch 0.443 (0.445) Remain 68:47:14 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.5177 FinalLoss 2.1365 Loss 3.6543 Accuracy 0.0000.
> [2021-08-16 13:45:36,947 INFO train.py line 404 34387] Epoch: [1/50][520/11134] Data 0.000 (0.002) Batch 0.443 (0.445) Remain 68:46:27 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2228 FinalLoss 2.0238 Loss 3.2466 Accuracy 0.3617.
> [2021-08-16 13:45:41,384 INFO train.py line 404 34387] Epoch: [1/50][530/11134] Data 0.000 (0.002) Batch 0.438 (0.445) Remain 68:46:07 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.8642 FinalLoss 1.7713 Loss 2.6355 Accuracy 0.0000.
> [2021-08-16 13:45:45,802 INFO train.py line 404 34387] Epoch: [1/50][540/11134] Data 0.000 (0.002) Batch 0.464 (0.445) Remain 68:45:28 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.5904 FinalLoss 2.2726 Loss 3.8630 Accuracy 0.1168.
> [2021-08-16 13:45:50,265 INFO train.py line 404 34387] Epoch: [1/50][550/11134] Data 0.000 (0.002) Batch 0.444 (0.445) Remain 68:45:36 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.7165 FinalLoss 2.8632 Loss 4.5796 Accuracy 0.1717.
> [2021-08-16 13:45:54,718 INFO train.py line 404 34387] Epoch: [1/50][560/11134] Data 0.000 (0.002) Batch 0.443 (0.445) Remain 68:45:33 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.6187 FinalLoss 2.3799 Loss 3.9986 Accuracy 0.4661.
> [2021-08-16 13:45:59,170 INFO train.py line 404 34387] Epoch: [1/50][570/11134] Data 0.000 (0.002) Batch 0.441 (0.445) Remain 68:45:31 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.9729 FinalLoss 1.9634 Loss 2.9363 Accuracy 0.2288.
> [2021-08-16 13:46:03,579 INFO train.py line 404 34387] Epoch: [1/50][580/11134] Data 0.000 (0.002) Batch 0.437 (0.445) Remain 68:44:46 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3900 FinalLoss 0.8930 Loss 2.2830 Accuracy 1.0000.
> [2021-08-16 13:46:08,037 INFO train.py line 404 34387] Epoch: [1/50][590/11134] Data 0.000 (0.002) Batch 0.444 (0.445) Remain 68:44:49 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.4730 FinalLoss 1.6217 Loss 2.0947 Accuracy 0.9400.
> [2021-08-16 13:46:12,481 INFO train.py line 404 34387] Epoch: [1/50][600/11134] Data 0.000 (0.002) Batch 0.442 (0.445) Remain 68:44:38 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3871 FinalLoss 2.7187 Loss 4.1059 Accuracy 0.2726.
> [2021-08-16 13:46:16,926 INFO train.py line 404 34387] Epoch: [1/50][610/11134] Data 0.000 (0.002) Batch 0.442 (0.445) Remain 68:44:29 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.4289 FinalLoss 2.3520 Loss 3.7809 Accuracy 0.0724.
> [2021-08-16 13:46:21,374 INFO train.py line 404 34387] Epoch: [1/50][620/11134] Data 0.000 (0.002) Batch 0.447 (0.445) Remain 68:44:23 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2056 FinalLoss 1.9841 Loss 3.1896 Accuracy 0.4603.
> [2021-08-16 13:46:25,869 INFO train.py line 404 34387] Epoch: [1/50][630/11134] Data 0.000 (0.002) Batch 0.452 (0.445) Remain 68:44:58 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1753 FinalLoss 2.1837 Loss 3.3590 Accuracy 0.0000.
> [2021-08-16 13:46:30,370 INFO train.py line 404 34387] Epoch: [1/50][640/11134] Data 0.000 (0.002) Batch 0.446 (0.445) Remain 68:45:37 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.4884 FinalLoss 2.3822 Loss 3.8706 Accuracy 0.4814.
> [2021-08-16 13:46:34,829 INFO train.py line 404 34387] Epoch: [1/50][650/11134] Data 0.000 (0.002) Batch 0.445 (0.445) Remain 68:45:39 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.4525 FinalLoss 3.9008 Loss 5.3533 Accuracy 0.1980.
> [2021-08-16 13:46:39,266 INFO train.py line 404 34387] Epoch: [1/50][660/11134] Data 0.000 (0.002) Batch 0.444 (0.445) Remain 68:45:21 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.3269 FinalLoss 2.4849 Loss 4.8118 Accuracy 0.0247.
> [2021-08-16 13:46:43,717 INFO train.py line 404 34387] Epoch: [1/50][670/11134] Data 0.000 (0.002) Batch 0.442 (0.445) Remain 68:45:17 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.5046 FinalLoss 2.1646 Loss 3.6692 Accuracy 0.0000.
> [2021-08-16 13:46:48,165 INFO train.py line 404 34387] Epoch: [1/50][680/11134] Data 0.000 (0.002) Batch 0.446 (0.445) Remain 68:45:09 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.5442 FinalLoss 2.4619 Loss 4.0061 Accuracy 0.0000.
> [2021-08-16 13:46:52,611 INFO train.py line 404 34387] Epoch: [1/50][690/11134] Data 0.000 (0.002) Batch 0.453 (0.445) Remain 68:45:01 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3234 FinalLoss 2.7271 Loss 4.0506 Accuracy 0.3641.
> [2021-08-16 13:46:57,065 INFO train.py line 404 34387] Epoch: [1/50][700/11134] Data 0.000 (0.002) Batch 0.443 (0.445) Remain 68:44:58 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3752 FinalLoss 2.3810 Loss 3.7562 Accuracy 0.2526.
> [2021-08-16 13:47:01,508 INFO train.py line 404 34387] Epoch: [1/50][710/11134] Data 0.000 (0.002) Batch 0.438 (0.445) Remain 68:44:47 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.5383 FinalLoss 2.2835 Loss 3.8218 Accuracy 0.4996.
> [2021-08-16 13:47:05,984 INFO train.py line 404 34387] Epoch: [1/50][720/11134] Data 0.000 (0.002) Batch 0.445 (0.445) Remain 68:45:02 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.4711 FinalLoss 2.2784 Loss 2.7495 Accuracy 0.2799.
> [2021-08-16 13:47:10,423 INFO train.py line 404 34387] Epoch: [1/50][730/11134] Data 0.000 (0.002) Batch 0.441 (0.445) Remain 68:44:48 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2853 FinalLoss 1.7163 Loss 3.0016 Accuracy 0.4092.
> [2021-08-16 13:47:14,895 INFO train.py line 404 34387] Epoch: [1/50][740/11134] Data 0.000 (0.002) Batch 0.450 (0.445) Remain 68:44:59 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.8706 FinalLoss 2.6512 Loss 4.5218 Accuracy 0.0810.
> [2021-08-16 13:47:19,356 INFO train.py line 404 34387] Epoch: [1/50][750/11134] Data 0.000 (0.002) Batch 0.439 (0.445) Remain 68:45:01 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2029 FinalLoss 2.0406 Loss 3.2435 Accuracy 0.1246.
> [2021-08-16 13:47:23,814 INFO train.py line 404 34387] Epoch: [1/50][760/11134] Data 0.000 (0.002) Batch 0.445 (0.445) Remain 68:45:01 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.6191 FinalLoss 2.6377 Loss 4.2568 Accuracy 0.3866.
> [2021-08-16 13:47:28,271 INFO train.py line 404 34387] Epoch: [1/50][770/11134] Data 0.000 (0.002) Batch 0.444 (0.445) Remain 68:45:01 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.6191 FinalLoss 1.9460 Loss 2.5651 Accuracy 0.0000.
> [2021-08-16 13:47:32,716 INFO train.py line 404 34387] Epoch: [1/50][780/11134] Data 0.000 (0.002) Batch 0.446 (0.445) Remain 68:44:51 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3176 FinalLoss 2.0726 Loss 3.3901 Accuracy 0.3394.
> [2021-08-16 13:47:37,190 INFO train.py line 404 34387] Epoch: [1/50][790/11134] Data 0.001 (0.002) Batch 0.447 (0.445) Remain 68:45:02 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.8148 FinalLoss 1.8500 Loss 2.6648 Accuracy 0.7156.
> [2021-08-16 13:47:41,653 INFO train.py line 404 34387] Epoch: [1/50][800/11134] Data 0.000 (0.002) Batch 0.444 (0.445) Remain 68:45:05 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.5808 FinalLoss 2.4740 Loss 4.0548 Accuracy 0.1144.
> [2021-08-16 13:47:46,170 INFO train.py line 404 34387] Epoch: [1/50][810/11134] Data 0.000 (0.002) Batch 0.444 (0.445) Remain 68:45:45 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.0939 FinalLoss 2.5968 Loss 3.6907 Accuracy 0.2771.
> [2021-08-16 13:47:50,627 INFO train.py line 404 34387] Epoch: [1/50][820/11134] Data 0.000 (0.002) Batch 0.444 (0.445) Remain 68:45:43 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 3.3481 FinalLoss 3.4132 Loss 6.7613 Accuracy 0.0628.
> [2021-08-16 13:47:55,080 INFO train.py line 404 34387] Epoch: [1/50][830/11134] Data 0.000 (0.002) Batch 0.447 (0.445) Remain 68:45:39 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1288 FinalLoss 1.8862 Loss 3.0151 Accuracy 0.2820.
> [2021-08-16 13:47:59,542 INFO train.py line 404 34387] Epoch: [1/50][840/11134] Data 0.000 (0.002) Batch 0.451 (0.445) Remain 68:45:40 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.6030 FinalLoss 2.9935 Loss 4.5965 Accuracy 0.3344.
> [2021-08-16 13:48:04,034 INFO train.py line 404 34387] Epoch: [1/50][850/11134] Data 0.000 (0.002) Batch 0.447 (0.445) Remain 68:46:01 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.7201 FinalLoss 1.9270 Loss 3.6472 Accuracy 0.5677.
> [2021-08-16 13:48:08,518 INFO train.py line 404 34387] Epoch: [1/50][860/11134] Data 0.000 (0.002) Batch 0.449 (0.445) Remain 68:46:16 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3860 FinalLoss 1.9059 Loss 3.2920 Accuracy 0.4910.
> [2021-08-16 13:48:13,008 INFO train.py line 404 34387] Epoch: [1/50][870/11134] Data 0.000 (0.002) Batch 0.454 (0.445) Remain 68:46:34 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.9220 FinalLoss 1.6483 Loss 2.5702 Accuracy 0.6863.
> [2021-08-16 13:48:17,503 INFO train.py line 404 34387] Epoch: [1/50][880/11134] Data 0.000 (0.002) Batch 0.445 (0.445) Remain 68:46:55 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.8363 FinalLoss 3.2620 Loss 5.0983 Accuracy 0.0263.
> [2021-08-16 13:48:21,976 INFO train.py line 404 34387] Epoch: [1/50][890/11134] Data 0.000 (0.002) Batch 0.448 (0.446) Remain 68:47:02 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3070 FinalLoss 1.6259 Loss 2.9329 Accuracy 0.1249.
> [2021-08-16 13:48:26,496 INFO train.py line 404 34387] Epoch: [1/50][900/11134] Data 0.000 (0.001) Batch 0.446 (0.446) Remain 68:47:38 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.8482 FinalLoss 3.0037 Loss 4.8519 Accuracy 0.2569.
> [2021-08-16 13:48:31,039 INFO train.py line 404 34387] Epoch: [1/50][910/11134] Data 0.000 (0.001) Batch 0.451 (0.446) Remain 68:48:27 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.1857 FinalLoss 2.7592 Loss 4.9449 Accuracy 0.4474.
> [2021-08-16 13:48:35,590 INFO train.py line 404 34387] Epoch: [1/50][920/11134] Data 0.001 (0.001) Batch 0.456 (0.446) Remain 68:49:19 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.7413 FinalLoss 2.6087 Loss 4.3500 Accuracy 0.0585.
> [2021-08-16 13:48:40,129 INFO train.py line 404 34387] Epoch: [1/50][930/11134] Data 0.000 (0.001) Batch 0.451 (0.446) Remain 68:50:03 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.7038 FinalLoss 2.5617 Loss 4.2655 Accuracy 0.0764.
> [2021-08-16 13:48:44,654 INFO train.py line 404 34387] Epoch: [1/50][940/11134] Data 0.000 (0.001) Batch 0.455 (0.446) Remain 68:50:38 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.7089 FinalLoss 2.6333 Loss 4.3422 Accuracy 0.1380.
> [2021-08-16 13:48:49,125 INFO train.py line 404 34387] Epoch: [1/50][950/11134] Data 0.000 (0.001) Batch 0.448 (0.446) Remain 68:50:40 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1911 FinalLoss 1.8770 Loss 3.0681 Accuracy 0.5113.
> [2021-08-16 13:48:53,641 INFO train.py line 404 34387] Epoch: [1/50][960/11134] Data 0.000 (0.001) Batch 0.453 (0.446) Remain 68:51:08 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.5177 FinalLoss 2.7894 Loss 4.3071 Accuracy 0.0097.
> [2021-08-16 13:48:58,145 INFO train.py line 404 34387] Epoch: [1/50][970/11134] Data 0.001 (0.001) Batch 0.449 (0.446) Remain 68:51:29 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3997 FinalLoss 2.2693 Loss 3.6690 Accuracy 0.0000.
> [2021-08-16 13:49:02,617 INFO train.py line 404 34387] Epoch: [1/50][980/11134] Data 0.000 (0.001) Batch 0.445 (0.446) Remain 68:51:31 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1512 FinalLoss 1.7244 Loss 2.8756 Accuracy 0.5570.
> [2021-08-16 13:49:07,138 INFO train.py line 404 34387] Epoch: [1/50][990/11134] Data 0.000 (0.001) Batch 0.451 (0.446) Remain 68:52:00 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2323 FinalLoss 1.6534 Loss 2.8857 Accuracy 0.2434.
> [2021-08-16 13:49:11,671 INFO train.py line 404 34387] Epoch: [1/50][1000/11134] Data 0.000 (0.001) Batch 0.452 (0.446) Remain 68:52:35 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.7756 FinalLoss 1.1093 Loss 1.8849 Accuracy 0.8780.
> [2021-08-16 13:49:16,210 INFO train.py line 404 34387] Epoch: [1/50][1010/11134] Data 0.000 (0.001) Batch 0.455 (0.446) Remain 68:53:14 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3168 FinalLoss 2.1713 Loss 3.4881 Accuracy 0.6497.
> [2021-08-16 13:49:20,713 INFO train.py line 404 34387] Epoch: [1/50][1020/11134] Data 0.000 (0.001) Batch 0.449 (0.446) Remain 68:53:31 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2316 FinalLoss 1.6224 Loss 2.8540 Accuracy 0.2718.
> [2021-08-16 13:49:25,242 INFO train.py line 404 34387] Epoch: [1/50][1030/11134] Data 0.000 (0.001) Batch 0.466 (0.446) Remain 68:54:02 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.7873 FinalLoss 2.1616 Loss 2.9489 Accuracy 0.3048.
> [2021-08-16 13:49:29,774 INFO train.py line 404 34387] Epoch: [1/50][1040/11134] Data 0.000 (0.001) Batch 0.454 (0.446) Remain 68:54:34 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.4898 FinalLoss 2.7843 Loss 4.2741 Accuracy 0.0349.
> [2021-08-16 13:49:34,280 INFO train.py line 404 34387] Epoch: [1/50][1050/11134] Data 0.000 (0.001) Batch 0.446 (0.446) Remain 68:54:52 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.1675 FinalLoss 3.6866 Loss 5.8541 Accuracy 0.2737.
> [2021-08-16 13:49:38,813 INFO train.py line 404 34387] Epoch: [1/50][1060/11134] Data 0.000 (0.001) Batch 0.446 (0.447) Remain 68:55:23 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.5553 FinalLoss 2.0986 Loss 3.6538 Accuracy 0.1597.
> [2021-08-16 13:49:43,323 INFO train.py line 404 34387] Epoch: [1/50][1070/11134] Data 0.000 (0.001) Batch 0.452 (0.447) Remain 68:55:41 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3722 FinalLoss 4.4256 Loss 5.7978 Accuracy 0.0085.
> [2021-08-16 13:49:47,832 INFO train.py line 404 34387] Epoch: [1/50][1080/11134] Data 0.000 (0.001) Batch 0.458 (0.447) Remain 68:55:59 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2374 FinalLoss 2.5958 Loss 3.8332 Accuracy 0.0135.
> [2021-08-16 13:49:52,334 INFO train.py line 404 34387] Epoch: [1/50][1090/11134] Data 0.000 (0.001) Batch 0.455 (0.447) Remain 68:56:13 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.8181 FinalLoss 1.4390 Loss 2.2570 Accuracy 0.5842.
> [2021-08-16 13:49:56,837 INFO train.py line 404 34387] Epoch: [1/50][1100/11134] Data 0.000 (0.001) Batch 0.442 (0.447) Remain 68:56:27 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.7727 FinalLoss 3.4040 Loss 5.1767 Accuracy 0.0110.
> [2021-08-16 13:50:01,392 INFO train.py line 404 34387] Epoch: [1/50][1110/11134] Data 0.000 (0.001) Batch 0.452 (0.447) Remain 68:57:06 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.4383 FinalLoss 1.9205 Loss 3.3587 Accuracy 0.2505.
> [2021-08-16 13:50:05,890 INFO train.py line 404 34387] Epoch: [1/50][1120/11134] Data 0.000 (0.001) Batch 0.448 (0.447) Remain 68:57:17 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1951 FinalLoss 2.5721 Loss 3.7672 Accuracy 0.3405.
> [2021-08-16 13:50:10,392 INFO train.py line 404 34387] Epoch: [1/50][1130/11134] Data 0.000 (0.001) Batch 0.448 (0.447) Remain 68:57:29 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.6424 FinalLoss 2.9030 Loss 4.5455 Accuracy 0.1082.
> [2021-08-16 13:50:14,906 INFO train.py line 404 34387] Epoch: [1/50][1140/11134] Data 0.000 (0.001) Batch 0.456 (0.447) Remain 68:57:46 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2740 FinalLoss 2.7361 Loss 4.0101 Accuracy 0.3646.
> [2021-08-16 13:50:19,442 INFO train.py line 404 34387] Epoch: [1/50][1150/11134] Data 0.000 (0.001) Batch 0.451 (0.447) Remain 68:58:15 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.7430 FinalLoss 1.9771 Loss 3.7201 Accuracy 0.4905.
> [2021-08-16 13:50:23,962 INFO train.py line 404 34387] Epoch: [1/50][1160/11134] Data 0.000 (0.001) Batch 0.455 (0.447) Remain 68:58:34 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2242 FinalLoss 2.4018 Loss 3.6260 Accuracy 0.2414.
> [2021-08-16 13:50:28,512 INFO train.py line 404 34387] Epoch: [1/50][1170/11134] Data 0.000 (0.001) Batch 0.454 (0.447) Remain 68:59:08 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.7080 FinalLoss 2.0300 Loss 2.7380 Accuracy 0.2529.
> [2021-08-16 13:50:33,047 INFO train.py line 404 34387] Epoch: [1/50][1180/11134] Data 0.000 (0.001) Batch 0.447 (0.447) Remain 68:59:34 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.9407 FinalLoss 2.2272 Loss 3.1678 Accuracy 0.0000.
> [2021-08-16 13:50:37,556 INFO train.py line 404 34387] Epoch: [1/50][1190/11134] Data 0.000 (0.001) Batch 0.450 (0.447) Remain 68:59:47 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2407 FinalLoss 2.0048 Loss 3.2456 Accuracy 0.5249.
> [2021-08-16 13:50:42,020 INFO train.py line 404 34387] Epoch: [1/50][1200/11134] Data 0.000 (0.001) Batch 0.442 (0.447) Remain 68:59:39 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.7475 FinalLoss 3.4837 Loss 6.2313 Accuracy 0.1117.
> [2021-08-16 13:50:46,498 INFO train.py line 404 34387] Epoch: [1/50][1210/11134] Data 0.000 (0.001) Batch 0.447 (0.447) Remain 68:59:38 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1380 FinalLoss 2.3439 Loss 3.4819 Accuracy 0.4917.
> [2021-08-16 13:50:50,997 INFO train.py line 404 34387] Epoch: [1/50][1220/11134] Data 0.000 (0.001) Batch 0.455 (0.447) Remain 68:59:46 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.8836 FinalLoss 3.3178 Loss 6.2014 Accuracy 0.1806.
> [2021-08-16 13:50:55,461 INFO train.py line 404 34387] Epoch: [1/50][1230/11134] Data 0.000 (0.001) Batch 0.439 (0.447) Remain 68:59:38 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.3367 FinalLoss 2.2429 Loss 3.5796 Accuracy 0.5170.
> [2021-08-16 13:50:59,926 INFO train.py line 404 34387] Epoch: [1/50][1240/11134] Data 0.000 (0.001) Batch 0.451 (0.447) Remain 68:59:30 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.8952 FinalLoss 3.9005 Loss 6.7957 Accuracy 0.1113.
> [2021-08-16 13:51:04,434 INFO train.py line 404 34387] Epoch: [1/50][1250/11134] Data 0.000 (0.001) Batch 0.450 (0.447) Remain 68:59:42 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.0987 FinalLoss 3.0169 Loss 4.1155 Accuracy 0.0000.
> [2021-08-16 13:51:08,929 INFO train.py line 404 34387] Epoch: [1/50][1260/11134] Data 0.000 (0.001) Batch 0.447 (0.447) Remain 68:59:48 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 3.1764 FinalLoss 3.2835 Loss 6.4600 Accuracy 0.0000.
> [2021-08-16 13:51:13,456 INFO train.py line 404 34387] Epoch: [1/50][1270/11134] Data 0.001 (0.001) Batch 0.458 (0.447) Remain 69:00:08 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.6864 FinalLoss 2.3854 Loss 4.0718 Accuracy 0.1933.
> [2021-08-16 13:51:18,014 INFO train.py line 404 34387] Epoch: [1/50][1280/11134] Data 0.000 (0.001) Batch 0.470 (0.447) Remain 69:00:40 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.5360 FinalLoss 1.6260 Loss 3.1620 Accuracy 0.7094.
> [2021-08-16 13:51:22,532 INFO train.py line 404 34387] Epoch: [1/50][1290/11134] Data 0.000 (0.001) Batch 0.452 (0.447) Remain 69:00:55 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.0630 FinalLoss 1.5333 Loss 2.5963 Accuracy 0.6547.
> [2021-08-16 13:51:27,030 INFO train.py line 404 34387] Epoch: [1/50][1300/11134] Data 0.000 (0.001) Batch 0.453 (0.447) Remain 69:01:01 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1016 FinalLoss 1.8319 Loss 2.9335 Accuracy 0.5452.
> [2021-08-16 13:51:31,542 INFO train.py line 404 34387] Epoch: [1/50][1310/11134] Data 0.000 (0.001) Batch 0.447 (0.447) Remain 69:01:13 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.6814 FinalLoss 3.1562 Loss 4.8376 Accuracy 0.2167.
> [2021-08-16 13:51:36,082 INFO train.py line 404 34387] Epoch: [1/50][1320/11134] Data 0.000 (0.001) Batch 0.450 (0.447) Remain 69:01:37 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.4985 FinalLoss 2.2382 Loss 3.7367 Accuracy 0.3413.
> [2021-08-16 13:51:40,600 INFO train.py line 404 34387] Epoch: [1/50][1330/11134] Data 0.000 (0.001) Batch 0.448 (0.447) Remain 69:01:50 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.0348 FinalLoss 3.5870 Loss 5.6218 Accuracy 0.0000.
> [2021-08-16 13:51:45,139 INFO train.py line 404 34387] Epoch: [1/50][1340/11134] Data 0.000 (0.001) Batch 0.454 (0.448) Remain 69:02:12 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2739 FinalLoss 1.8914 Loss 3.1653 Accuracy 0.4705.
> [2021-08-16 13:51:49,674 INFO train.py line 404 34387] Epoch: [1/50][1350/11134] Data 0.001 (0.001) Batch 0.449 (0.448) Remain 69:02:33 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.1109 FinalLoss 1.9550 Loss 3.0659 Accuracy 0.3048.
> [2021-08-16 13:51:54,206 INFO train.py line 404 34387] Epoch: [1/50][1360/11134] Data 0.001 (0.001) Batch 0.454 (0.448) Remain 69:02:51 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.6413 FinalLoss 2.3996 Loss 4.0409 Accuracy 0.1414.
> [2021-08-16 13:51:58,754 INFO train.py line 404 34387] Epoch: [1/50][1370/11134] Data 0.001 (0.001) Batch 0.464 (0.448) Remain 69:03:16 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2508 FinalLoss 2.2694 Loss 3.5202 Accuracy 0.0000.
> [2021-08-16 13:52:03,205 INFO train.py line 404 34387] Epoch: [1/50][1380/11134] Data 0.001 (0.001) Batch 0.441 (0.448) Remain 69:03:01 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 0.9516 FinalLoss 0.8739 Loss 1.8255 Accuracy 0.9915.
> [2021-08-16 13:52:07,681 INFO train.py line 404 34387] Epoch: [1/50][1390/11134] Data 0.000 (0.001) Batch 0.442 (0.448) Remain 69:02:56 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.2609 FinalLoss 2.7621 Loss 4.0229 Accuracy 0.0000.
> [2021-08-16 13:52:12,153 INFO train.py line 404 34387] Epoch: [1/50][1400/11134] Data 0.000 (0.001) Batch 0.443 (0.448) Remain 69:02:50 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.2209 FinalLoss nan Loss nan Accuracy 0.0000.
> [2021-08-16 13:52:16,615 INFO train.py line 404 34387] Epoch: [1/50][1410/11134] Data 0.000 (0.001) Batch 0.448 (0.448) Remain 69:02:40 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.5167 FinalLoss nan Loss nan Accuracy 0.0000.
> [2021-08-16 13:52:21,079 INFO train.py line 404 34387] Epoch: [1/50][1420/11134] Data 0.000 (0.001) Batch 0.445 (0.448) Remain 69:02:31 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.9679 FinalLoss nan Loss nan Accuracy 0.0000.
> [2021-08-16 13:52:25,519 INFO train.py line 404 34387] Epoch: [1/50][1430/11134] Data 0.001 (0.001) Batch 0.439 (0.448) Remain 69:02:12 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.8107 FinalLoss nan Loss nan Accuracy 0.0000.
> [2021-08-16 13:52:29,990 INFO train.py line 404 34387] Epoch: [1/50][1440/11134] Data 0.000 (0.001) Batch 0.440 (0.448) Remain 69:02:06 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.0621 FinalLoss nan Loss nan Accuracy 0.0000.
> [2021-08-16 13:52:34,436 INFO train.py line 404 34387] Epoch: [1/50][1450/11134] Data 0.000 (0.001) Batch 0.443 (0.448) Remain 69:01:50 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.0649 FinalLoss nan Loss nan Accuracy 0.0000.
> [2021-08-16 13:52:38,914 INFO train.py line 404 34387] Epoch: [1/50][1460/11134] Data 0.000 (0.001) Batch 0.453 (0.448) Remain 69:01:46 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.2776 FinalLoss nan Loss nan Accuracy 0.0000.
> [2021-08-16 13:52:43,406 INFO train.py line 404 34387] Epoch: [1/50][1470/11134] Data 0.000 (0.001) Batch 0.449 (0.448) Remain 69:01:48 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.8996 FinalLoss nan Loss nan Accuracy 0.0000.
> [2021-08-16 13:52:47,848 INFO train.py line 404 34387] Epoch: [1/50][1480/11134] Data 0.000 (0.001) Batch 0.437 (0.448) Remain 69:01:31 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 3.2841 FinalLoss nan Loss nan Accuracy 0.0000.
> [2021-08-16 13:52:52,246 INFO train.py line 404 34387] Epoch: [1/50][1490/11134] Data 0.000 (0.001) Batch 0.441 (0.448) Remain 69:00:58 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.7820 FinalLoss nan Loss nan Accuracy 0.0000.
> [2021-08-16 13:52:56,765 INFO train.py line 404 34387] Epoch: [1/50][1500/11134] Data 0.000 (0.001) Batch 0.449 (0.448) Remain 69:01:09 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.3175 FinalLoss nan Loss nan Accuracy 0.0000.
> [2021-08-16 13:53:01,234 INFO train.py line 404 34387] Epoch: [1/50][1510/11134] Data 0.000 (0.001) Batch 0.441 (0.448) Remain 69:01:02 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.2982 FinalLoss nan Loss nan Accuracy 0.0000.
> [2021-08-16 13:53:05,686 INFO train.py line 404 34387] Epoch: [1/50][1520/11134] Data 0.000 (0.001) Batch 0.442 (0.448) Remain 69:00:50 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.1052 FinalLoss nan Loss nan Accuracy 0.0000.
> [2021-08-16 13:53:10,159 INFO train.py line 404 34387] Epoch: [1/50][1530/11134] Data 0.000 (0.001) Batch 0.460 (0.448) Remain 69:00:44 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.6419 FinalLoss nan Loss nan Accuracy 0.0000.
> [2021-08-16 13:53:14,590 INFO train.py line 404 34387] Epoch: [1/50][1540/11134] Data 0.000 (0.001) Batch 0.438 (0.447) Remain 69:00:24 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.2729 FinalLoss nan Loss nan Accuracy 0.0000.
> [2021-08-16 13:53:19,104 INFO train.py line 404 34387] Epoch: [1/50][1550/11134] Data 0.000 (0.001) Batch 0.456 (0.448) Remain 69:00:33 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.7142 FinalLoss nan Loss nan Accuracy 0.0000.
> [2021-08-16 13:53:23,665 INFO train.py line 404 34387] Epoch: [1/50][1560/11134] Data 0.000 (0.001) Batch 0.446 (0.448) Remain 69:00:59 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.2909 FinalLoss nan Loss nan Accuracy 0.0000.
> [2021-08-16 13:53:28,190 INFO train.py line 404 34387] Epoch: [1/50][1570/11134] Data 0.000 (0.001) Batch 0.443 (0.448) Remain 69:01:13 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 1.9410 FinalLoss nan Loss nan Accuracy 0.0000.
> [2021-08-16 13:53:32,631 INFO train.py line 404 34387] Epoch: [1/50][1580/11134] Data 0.000 (0.001) Batch 0.439 (0.448) Remain 69:00:56 MainLoss 0.0000 AuxLoss 0.0000 RegLoss 2.6594 FinalLoss nan Loss nan Accuracy 0.0000.
>
> —
> You are receiving this because you were mentioned.
> Reply to this email directly, view it on GitHub
> <#4>,
> or unsubscribe
> <https://github.com/notifications/unsubscribe-auth/AB7WPDCKE4DHDFAWRGG46O3T5CTJFANCNFSM5CHBP22A>
> .
> Triage notifications on the go with GitHub Mobile for iOS
> <https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675>
> or Android
> <https://play.google.com/store/apps/details?id=com.github.android&utm_campaign=notification-email>
> .
>
|
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi, @liuzhengzhe
Thanks for sharing the code.
Considering my experiments environment:
cudatoolkit 10.1.243, pytorch 1.4.0, V10.0.130, python 3.7
But during the training phase, after about one thousand iterations, the accuracy was reported to be 0.000.
So, what is wrong with it?
The text was updated successfully, but these errors were encountered: