forked from ndscigdata/tensorflow-im2txt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
198 lines (159 loc) · 6.59 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Evaluate the model.
This script should be run concurrently with training so that summaries show up
in TensorBoard.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import os.path
import time
import numpy as np
import tensorflow as tf
from im2txt import configuration
from im2txt import show_and_tell_model
FLAGS = tf.flags.FLAGS
tf.flags.DEFINE_string("input_file_pattern", "",
"File pattern of sharded TFRecord input files.")
tf.flags.DEFINE_string("checkpoint_dir", "",
"Directory containing model checkpoints.")
tf.flags.DEFINE_string("eval_dir", "", "Directory to write event logs.")
tf.flags.DEFINE_integer("eval_interval_secs", 600,
"Interval between evaluation runs.")
tf.flags.DEFINE_integer("num_eval_examples", 10132,
"Number of examples for evaluation.")
tf.flags.DEFINE_integer("min_global_step", 5000,
"Minimum global step to run evaluation.")
tf.logging.set_verbosity(tf.logging.INFO)
def evaluate_model(sess, model, global_step, summary_writer, summary_op):
"""Computes perplexity-per-word over the evaluation dataset.
Summaries and perplexity-per-word are written out to the eval directory.
Args:
sess: Session object.
model: Instance of ShowAndTellModel; the model to evaluate.
global_step: Integer; global step of the model checkpoint.
summary_writer: Instance of FileWriter.
summary_op: Op for generating model summaries.
"""
# Log model summaries on a single batch.
summary_str = sess.run(summary_op)
summary_writer.add_summary(summary_str, global_step)
# Compute perplexity over the entire dataset.
num_eval_batches = int(
math.ceil(FLAGS.num_eval_examples / model.config.batch_size))
start_time = time.time()
sum_losses = 0.
sum_weights = 0.
for i in xrange(num_eval_batches):
cross_entropy_losses, weights = sess.run([
model.target_cross_entropy_losses,
model.target_cross_entropy_loss_weights
])
sum_losses += np.sum(cross_entropy_losses * weights)
sum_weights += np.sum(weights)
if not i % 100:
tf.logging.info("Computed losses for %d of %d batches.", i + 1,
num_eval_batches)
eval_time = time.time() - start_time
perplexity = math.exp(sum_losses / sum_weights)
tf.logging.info("Perplexity = %f (%.2g sec)", perplexity, eval_time)
# Log perplexity to the FileWriter.
summary = tf.Summary()
value = summary.value.add()
value.simple_value = perplexity
value.tag = "Perplexity"
summary_writer.add_summary(summary, global_step)
# Write the Events file to the eval directory.
summary_writer.flush()
tf.logging.info("Finished processing evaluation at global step %d.",
global_step)
def run_once(model, saver, summary_writer, summary_op):
"""Evaluates the latest model checkpoint.
Args:
model: Instance of ShowAndTellModel; the model to evaluate.
saver: Instance of tf.train.Saver for restoring model Variables.
summary_writer: Instance of FileWriter.
summary_op: Op for generating model summaries.
"""
model_path = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
if not model_path:
tf.logging.info("Skipping evaluation. No checkpoint found in: %s",
FLAGS.checkpoint_dir)
return
with tf.Session() as sess:
# Load model from checkpoint.
tf.logging.info("Loading model from checkpoint: %s", model_path)
saver.restore(sess, model_path)
global_step = tf.train.global_step(sess, model.global_step.name)
tf.logging.info("Successfully loaded %s at global step = %d.",
os.path.basename(model_path), global_step)
if global_step < FLAGS.min_global_step:
tf.logging.info("Skipping evaluation. Global step = %d < %d", global_step,
FLAGS.min_global_step)
return
# Start the queue runners.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
# Run evaluation on the latest checkpoint.
try:
evaluate_model(
sess=sess,
model=model,
global_step=global_step,
summary_writer=summary_writer,
summary_op=summary_op)
except Exception, e: # pylint: disable=broad-except
tf.logging.error("Evaluation failed.")
coord.request_stop(e)
coord.request_stop()
coord.join(threads, stop_grace_period_secs=10)
def run():
"""Runs evaluation in a loop, and logs summaries to TensorBoard."""
# Create the evaluation directory if it doesn't exist.
eval_dir = FLAGS.eval_dir
if not tf.gfile.IsDirectory(eval_dir):
tf.logging.info("Creating eval directory: %s", eval_dir)
tf.gfile.MakeDirs(eval_dir)
g = tf.Graph()
with g.as_default():
# Build the model for evaluation.
model_config = configuration.ModelConfig()
model_config.input_file_pattern = FLAGS.input_file_pattern
model = show_and_tell_model.ShowAndTellModel(model_config, mode="eval")
model.build()
# Create the Saver to restore model Variables.
saver = tf.train.Saver()
# Create the summary operation and the summary writer.
summary_op = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter(eval_dir)
g.finalize()
# Run a new evaluation run every eval_interval_secs.
while True:
start = time.time()
tf.logging.info("Starting evaluation at " + time.strftime(
"%Y-%m-%d-%H:%M:%S", time.localtime()))
run_once(model, saver, summary_writer, summary_op)
time_to_next_eval = start + FLAGS.eval_interval_secs - time.time()
if time_to_next_eval > 0:
time.sleep(time_to_next_eval)
def main(unused_argv):
assert FLAGS.input_file_pattern, "--input_file_pattern is required"
assert FLAGS.checkpoint_dir, "--checkpoint_dir is required"
assert FLAGS.eval_dir, "--eval_dir is required"
run()
if __name__ == "__main__":
tf.app.run()