From e56f94a79165445b1e5a04c9f368c288bdb48c80 Mon Sep 17 00:00:00 2001 From: Christopher Haster Date: Fri, 25 Oct 2024 12:16:24 -0500 Subject: [PATCH] Rearranged expanded sums/prods to match Wikipedia This form also just seems a bit more readable, with the expansion being more a sidenote than relevant to the core math. --- README.md | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) diff --git a/README.md b/README.md index 3c38032..34e57eb 100644 --- a/README.md +++ b/README.md @@ -143,8 +143,8 @@ points at $g^i$ where $i < n$ like so:

P(x) = \left(x-1\right)\left(x-g\right)\cdots\left(x-g^{n-1}\right) = \prod_{i=0}^{n-1} \left(x - g^i\right)

@@ -210,8 +210,8 @@ to our original codeword, where $E(x)$ contains up to $e$ non-zero terms:

E(x) = E_{j_0} x^{j_0} + E_{j_1} x^{j_1} + \cdots + E_{j_{e-1}} x^{j_{e-1}} = \sum_{j \in E} E_j x^j

@@ -281,8 +281,8 @@ To help with this, we introduce a very special polynomial, the

\Lambda(x) = \left(1 - X_{j_0} x\right)\left(1 - X_{j_1} x\right)\cdots\left(1 - X_{j_{e-1}} x\right) = \prod_{j \in E} \left(1 - X_j x\right)

@@ -329,8 +329,8 @@ definition of $\Lambda(x)$:

\Lambda(x) = 1 + \Lambda_1 x + \Lambda_2 x^2 + \cdots + \Lambda_e x^e = 1 + \sum_{k=1}^e \Lambda_k x^k

@@ -389,8 +389,8 @@ $S_{i-1}, S_{i-2}, \cdots, S_{i-e}$:

S_i = \Lambda_1 S_{i-1} + \Lambda_2 S_{i-2} + \cdots + \Lambda_e S_{i-e} = \sum_{k=1}^e \Lambda_k S_{i-k}