Skip to content

Styleformer - Official Pytorch Implementation

License

Notifications You must be signed in to change notification settings

lionsheep0724/Styleformer

 
 

Repository files navigation

Styleformer -- Official PyTorch implementation

Styleformer: Transformer based Generative Adversarial Networks with Style Vector(https://arxiv.org/abs/2106.07023)

PWC PWC

Requirements

  • We have done all testing and development using 4 Titan RTX GPUs with 24GB.
  • 64-bit Python 3.7 and PyTorch 1.7.1.
  • Python libraries: pip install click requests tqdm pyspng ninja imageio-ffmpeg==0.4.3. We use the Anaconda3 2020.11 distribution which installs most of these by default.

Pretrained pickle

CIFAR-10 Styleformer-Large with FID 2.82 IS 9.94

STL-10 Styleformer-Medium with FID 15.17 IS 11.01

CelebA Styleformer-Linformer with FID 3.66

LSUN-Church Styleformer-Linformer with FID 7.99

Generating images

Pre-trained networks are stored as *.pkl files that can be referenced using local filenames

# Generate images using pretrained_weight 
python generate.py --outdir=out --seeds=100-105 \
    --network=path_to_pkl_file

Outputs from the above commands are placed under out/*.png, controlled by --outdir. Downloaded network pickles are cached under $HOME/.cache/dnnlib, which can be overridden by setting the DNNLIB_CACHE_DIR environment variable. The default PyTorch extension build directory is $HOME/.cache/torch_extensions, which can be overridden by setting TORCH_EXTENSIONS_DIR.

Preparing datasets

CIFAR-10: Download the CIFAR-10 python version and convert to ZIP archive:

python dataset_tool.py --source=~/downloads/cifar-10-python.tar.gz --dest=~/datasets/cifar10.zip

STL-10: Download the stl-10 dataset 5k training, 100k unlabeled images from STL-10 dataset page and convert to ZIP archive:

python dataset_tool.py --source=~/downloads/cifar-10-python.tar.gz --dest=~/datasets/stl10.zip \
    ---width=48 --height=48

CelebA: Download the CelebA dataset Aligned&Cropped Images from CelebA dataset page and convert to ZIP archive:

python dataset_tool.py --source=~/downloads/cifar-10-python.tar.gz --dest=~/datasets/stl10.zip \
    ---width=64 --height=64

LSUN Church: Download the desired categories(church) from the LSUN project page and convert to ZIP archive:

python dataset_tool.py --source=~/downloads/lsun/raw/church_lmdb --dest=~/datasets/lsunchurch.zip \
    --width=128 --height=128

Training new networks

In its most basic form, training new networks boils down to:

python train.py --outdir=~/training-runs --data=~/mydataset.zip --gpus=1 --batch=32 --cfg=cifar --g_dict=256,64,16 \
    --num_layers=1,2,2 --depth=32
  • --g_dict= it means 'Hidden size' in paper, and it must be match with image resolution.
  • --num_layers= it means 'Layers' in paper, and it must be match with image resolution.
  • --depth=32 it means minimum required depth is 32, described in Section 2 at paper.
  • --linformer=1 apply informer to Styleformer.

Please refer to python train.py --help for the full list. To train STL-10 dataset with same setting at paper, please fix the starting resolution 8x8 to 12x12 at training/networks_Generator.py.

Quality metrics

Quality metrics can be computed after the training:

# Pre-trained network pickle: specify dataset explicitly, print result to stdout.
python calc_metrics.py --metrics=fid50k_full --data=~/datasets/lsunchurch.zip \
    --network=path_to_pretrained_lsunchurch_pkl_file
    
python calc_metrics.py --metrics=is50k --data=~/datasets/lsunchurch.zip \
    --network=path_to_pretrained_lsunchurch_pkl_file    

Citation

If you found our work useful, please don't forget to cite

@misc{park2021styleformer,
      title={Styleformer: Transformer based Generative Adversarial Networks with Style Vector}, 
      author={Jeeseung Park and Younggeun Kim},
      year={2021},
      eprint={2106.07023},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

The code is heavily based on the stylegan2-ada-pytorch implementation

About

Styleformer - Official Pytorch Implementation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 90.2%
  • Cuda 6.8%
  • C++ 3.0%