-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathevaluation.py
95 lines (75 loc) · 2.74 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import numpy
import torch
from datasets import load_dataset
from tools import encode_sentences, encode_images
def evalrank(model, data, split='dev'):
"""
Evaluate a trained model on either dev ortest
"""
print 'Loading dataset'
if split == 'dev':
X = load_dataset(data)[1]
else:
X = load_dataset(data, load_test=True)
print 'Computing results...'
ls = encode_sentences(model, X[0])
lim = encode_images(model, X[1])
(r1, r5, r10, medr) = i2t(lim, ls)
print "Image to text: %.1f, %.1f, %.1f, %.1f" % (r1, r5, r10, medr)
(r1i, r5i, r10i, medri) = t2i(lim, ls)
print "Text to image: %.1f, %.1f, %.1f, %.1f" % (r1i, r5i, r10i, medri)
def i2t(images, captions, npts=None):
"""
Images->Text (Image Annotation)
Images: (5N, K) matrix of images
Captions: (5N, K) matrix of captions
"""
if npts == None:
npts = images.size()[0] / 5
ranks = numpy.zeros(npts)
for index in range(npts):
# Get query image
im = images[5 * index].unsqueeze(0)
# Compute scores
d = torch.mm(im, captions.t())
d_sorted, inds = torch.sort(d, descending=True)
inds = inds.data.squeeze(0).cpu().numpy()
# Score
rank = 1e20
# find the highest ranking
for i in range(5*index, 5*index + 5, 1):
tmp = numpy.where(inds == i)[0][0]
if tmp < rank:
rank = tmp
ranks[index] = rank
# Compute metrics
r1 = 100.0 * len(numpy.where(ranks < 1)[0]) / len(ranks)
r5 = 100.0 * len(numpy.where(ranks < 5)[0]) / len(ranks)
r10 = 100.0 * len(numpy.where(ranks < 10)[0]) / len(ranks)
medr = numpy.floor(numpy.median(ranks)) + 1
return (r1, r5, r10, medr)
def t2i(images, captions, npts=None, data='f8k'):
"""
Text->Images (Image Search)
Images: (5N, K) matrix of images
Captions: (5N, K) matrix of captions
"""
if npts == None:
npts = images.size()[0] / 5
ims = torch.cat([images[i].unsqueeze(0) for i in range(0, len(images), 5)])
ranks = numpy.zeros(5 * npts)
for index in range(npts):
# Get query captions
queries = captions[5*index : 5*index + 5]
# Compute scores
d = torch.mm(queries, ims.t())
for i in range(d.size()[0]):
d_sorted, inds = torch.sort(d[i], descending=True)
inds = inds.data.squeeze(0).cpu().numpy()
ranks[5 * index + i] = numpy.where(inds == index)[0][0]
# Compute metrics
r1 = 100.0 * len(numpy.where(ranks < 1)[0]) / len(ranks)
r5 = 100.0 * len(numpy.where(ranks < 5)[0]) / len(ranks)
r10 = 100.0 * len(numpy.where(ranks < 10)[0]) / len(ranks)
medr = numpy.floor(numpy.median(ranks)) + 1
return (r1, r5, r10, medr)