forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathfinetune.py
135 lines (112 loc) · 6.45 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import time
from functools import partial
import paddle
from evaluate import evaluate
from utils import convert_example, create_data_loader, reader, set_seed
from paddlenlp.datasets import load_dataset
from paddlenlp.metrics import SpanEvaluator
from paddlenlp.transformers import UIE, AutoTokenizer
from paddlenlp.utils.log import logger
def do_train():
paddle.set_device(args.device)
rank = paddle.distributed.get_rank()
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
set_seed(args.seed)
tokenizer = AutoTokenizer.from_pretrained(args.model)
model = UIE.from_pretrained(args.model)
train_ds = load_dataset(reader, data_path=args.train_path, max_seq_len=args.max_seq_len, lazy=False)
dev_ds = load_dataset(reader, data_path=args.dev_path, max_seq_len=args.max_seq_len, lazy=False)
trans_fn = partial(convert_example, tokenizer=tokenizer, max_seq_len=args.max_seq_len)
train_data_loader = create_data_loader(train_ds, mode="train", batch_size=args.batch_size, trans_fn=trans_fn)
dev_data_loader = create_data_loader(dev_ds, mode="dev", batch_size=args.batch_size, trans_fn=trans_fn)
if args.init_from_ckpt and os.path.isfile(args.init_from_ckpt):
logger.info("load model from path: {}".format(args.init_from_ckpt))
state_dict = paddle.load(args.init_from_ckpt)
model.set_dict(state_dict)
if paddle.distributed.get_world_size() > 1:
model = paddle.DataParallel(model)
optimizer = paddle.optimizer.AdamW(learning_rate=args.learning_rate, parameters=model.parameters())
criterion = paddle.nn.BCELoss()
metric = SpanEvaluator()
loss_list = []
global_step = 0
best_f1 = 0
tic_train = time.time()
for epoch in range(1, args.num_epochs + 1):
for batch in train_data_loader:
input_ids, token_type_ids, att_mask, pos_ids, start_ids, end_ids = batch
start_prob, end_prob = model(input_ids, token_type_ids, att_mask, pos_ids)
start_ids = paddle.cast(start_ids, "float32")
end_ids = paddle.cast(end_ids, "float32")
loss_start = criterion(start_prob, start_ids)
loss_end = criterion(end_prob, end_ids)
loss = (loss_start + loss_end) / 2.0
loss.backward()
optimizer.step()
optimizer.clear_grad()
loss_list.append(float(loss))
global_step += 1
if global_step % args.logging_steps == 0 and rank == 0:
time_diff = time.time() - tic_train
loss_avg = sum(loss_list) / len(loss_list)
logger.info(
"global step %d, epoch: %d, loss: %.5f, speed: %.2f step/s"
% (global_step, epoch, loss_avg, args.logging_steps / time_diff)
)
tic_train = time.time()
if global_step % args.valid_steps == 0 and rank == 0:
save_dir = os.path.join(args.save_dir, "model_%d" % global_step)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
model_to_save = model._layers if isinstance(model, paddle.DataParallel) else model
model_to_save.save_pretrained(save_dir)
logger.disable()
tokenizer.save_pretrained(save_dir)
logger.enable()
precision, recall, f1 = evaluate(model, metric, dev_data_loader)
logger.info("Evaluation precision: %.5f, recall: %.5f, F1: %.5f" % (precision, recall, f1))
if f1 > best_f1:
logger.info(f"best F1 performence has been updated: {best_f1:.5f} --> {f1:.5f}")
best_f1 = f1
save_dir = os.path.join(args.save_dir, "model_best")
model_to_save = model._layers if isinstance(model, paddle.DataParallel) else model
model_to_save.save_pretrained(save_dir)
logger.disable()
tokenizer.save_pretrained(save_dir)
logger.enable()
tic_train = time.time()
if __name__ == "__main__":
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", default=16, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument("--learning_rate", default=1e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--train_path", default=None, type=str, help="The path of train set.")
parser.add_argument("--dev_path", default=None, type=str, help="The path of dev set.")
parser.add_argument("--save_dir", default='./checkpoint', type=str, help="The output directory where the model checkpoints will be written.")
parser.add_argument("--max_seq_len", default=512, type=int, help="The maximum input sequence length. Sequences longer than this will be split automatically.")
parser.add_argument("--num_epochs", default=100, type=int, help="Total number of training epochs to perform.")
parser.add_argument("--seed", default=1000, type=int, help="Random seed for initialization")
parser.add_argument("--logging_steps", default=10, type=int, help="The interval steps to logging.")
parser.add_argument("--valid_steps", default=100, type=int, help="The interval steps to evaluate model performance.")
parser.add_argument('--device', choices=['cpu', 'gpu'], default="gpu", help="Select which device to train model, defaults to gpu.")
parser.add_argument("--model", choices=["uie-senta-base", "uie-senta-medium", "uie-senta-mini", "uie-senta-micro", "uie-senta-nano"], default="uie-senta-base", type=str, help="Select the pretrained model for few-shot learning.")
parser.add_argument("--init_from_ckpt", default=None, type=str, help="The path of model parameters for initialization.")
args = parser.parse_args()
# yapf: enable
do_train()