Skip to content

Latest commit

 

History

History
168 lines (118 loc) · 7.27 KB

README.md

File metadata and controls

168 lines (118 loc) · 7.27 KB

YOLOv8-Face

The YOLOv8-Face repository provides pre-trained models designed specifically for face detection. The models have been pre-trained by Lindevs from scratch.

Release Notes

  • [2024-11-01] Re-saved and re-uploaded PyTorch models to avoid the dill package usage warning.
  • [2023-12-09] YOLOv8x-Face model has been added.
  • [2023-12-02] YOLOv8n-Face, YOLOv8s-Face, YOLOv8m-Face and YOLOv8l-Face models has been added.

Pre-trained Models

The models have been trained on WIDERFace dataset using NVIDIA RTX 4090. YOLOv8 models were used as initial weights for training.

Name Image Size
(pixels)
mAPval
50-95
Params GFLOPs
YOLOv8n-Face 640 37.5 3005843 8.1
YOLOv8s-Face 640 40.6 11125971 28.4
YOLOv8m-Face 640 41.7 25840339 78.7
YOLOv8l-Face 640 42.8 43607379 164.8
YOLOv8x-Face 640 43.3 68124531 257.4
  • Download links:
Name Model Size (MB) Link SHA-256
YOLOv8n-Face 6.0
11.7
PyTorch
ONNX
b038ca653b503453a94f6e12d76feca6840b2a97d7a1322b4498c5e922f29832
8d0bfb0c3383c5bd7a78dd24ef79a21e2aa456619b6ab5e53867092d1c7dc414
YOLOv8s-Face 21.5
42.7
PyTorch
ONNX
fa7e47fe9378255e4b52cb7abc4e387c0353dd26b0b8e6834045dc9dfbaaf69f
0a6d19f2f68d7f0cc8104ab5c9eaa54b63e298f91dcfefd4be897f94a1561d02
YOLOv8m-Face 49.6
98.8
PyTorch
ONNX
303dcd997fb6ed446d1626b2bbd36f146894cdf600e33c4d563124f8c1b191c4
652f1ee6cd0291295de3d8fcaf9375ad62ef269055c0ada458bfdc4e7e6095da
YOLOv8l-Face 83.6
166.6
PyTorch
ONNX
29cc43b27c8b865859c66489a4399a10a3efd80ce68ded9815364117641706d5
52dc39e46a7316398c95d30dd669a641382c9fdd8b675ad32aa65585bf820ea0
YOLOv8x-Face 130.4
260.1
PyTorch
ONNX
117c587c79e75e68a83e70200549bf6c035fa45b30e02fb41699639aadcfa0e6
0ddad01728bc5f7d6c68c9b5567cfd1c8257f041af607c215ed865c5442f87fa
  • Training results:
Name Training Time Epochs Batch Size Non-default
parameters
Link
YOLOv8n-Face 2.75 hours 300 16 - results.txt
YOLOv8s-Face 2.68 hours 200 16 - results.txt
YOLOv8m-Face 3.01 hours 120 16 - results.txt
YOLOv8l-Face 3.97 hours 110 16 - results.txt
YOLOv8x-Face 13.65 hours 240 16 optimizer='SGD'
lrf=1e-5
weight_decay=5e-3
results.txt
  • Evaluation results on WIDERFace dataset:
Name Easy Medium Hard
YOLOv8n-Face 93.79 91.82 79.38
YOLOv8s-Face 95.13 93.62 82.90
YOLOv8m-Face 95.73 94.47 84.55
YOLOv8l-Face 96.26 95.03 85.43
YOLOv8x-Face 96.33 95.16 85.80

Instructions

Installation

pip install -r requirements.txt

Prediction

python predict.py --weights weights/yolov8n-face-lindevs.pt --source data/images/bus.jpg
  • OpenCV DNN
python examples/opencv-dnn-python/main.py --weights weights/yolov8n-face-lindevs.onnx --source data/images/bus.jpg

Export

  • Install package:
pip install onnx
  • Export to ONNX format:
python export.py --weights weights/yolov8n-face-lindevs.pt
  • Or export to ONNX format using dynamic axis:
python export.py --weights weights/yolov8n-face-lindevs.pt --dynamic

Dataset Preparation

  • Download WIDERFace dataset and annotations:
python download.py
  • Convert annotations to YOLO format:
python annotations.py
  • Copy widerface.yaml.example file to widerface.yaml:
python data_file.py

Training

  • Prepare dataset.
  • Start training:
python train.py --weights yolov8n.pt --epochs 300 2>&1 | tee -a results.txt
python train.py --weights yolov8s.pt --epochs 200 2>&1 | tee -a results.txt
python train.py --weights yolov8m.pt --epochs 120 2>&1 | tee -a results.txt
python train.py --weights yolov8l.pt --epochs 110 2>&1 | tee -a results.txt
python train.py --weights yolov8x.pt --epochs 240 --optimizer SGD --lrf 1e-5 --weight-decay 5e-3 2>&1 | tee -a results.txt
  • Or resume training:
python train.py --weights runs/detect/train/weights/last.pt --resume 2>&1 | tee -a results.txt

Validation

  • Prepare dataset.
  • Start validation:
python validate.py --weights weights/yolov8n-face-lindevs.pt

WIDERFace Evaluation

  • Prepare dataset.
  • Start prediction on validation set:
python widerface/predict.py --weights weights/yolov8n-face-lindevs.pt
  • Install package:
pip install Cython
  • Build extension:
cd widerface && python setup.py build_ext --inplace && cd ..
  • Start evaluation:
python widerface/evaluate.py