diff --git a/benchmarks/benchmarks.py b/benchmarks/benchmarks.py index 2cd48ea8..6aa54c4e 100644 --- a/benchmarks/benchmarks.py +++ b/benchmarks/benchmarks.py @@ -40,48 +40,3 @@ def time_prune_sync_workflow(): ens.prune(50) # calc nobs -> cut any object with nobs<50 ens.source.head(5) # should call sync implicitly - - -def time_basic_workflow(): - np.random.seed(1) - - # Generate 10 astronomical objects - n_obj = 10 - ids = 8000 + np.arange(n_obj) - names = ids.astype(str) - object_table = pd.DataFrame( - { - "id": ids, - "name": names, - "ddf_bool": np.random.randint(0, 2, n_obj), # 0 if from deep drilling field, 1 otherwise - "libid_cadence": np.random.randint(1, 130, n_obj), - } - ) - - # Create 1000 lightcurves with 100 measurements each - lc_len = 100 - num_points = 1000 - all_bands = np.array(["r", "g", "b", "i"]) - source_table = pd.DataFrame( - { - "id": 8000 + (np.arange(num_points) % n_obj), - "time": np.arange(num_points), - "flux": np.random.random_sample(size=num_points)*10, - "band": np.repeat(all_bands, num_points / len(all_bands)), - "error": np.random.random_sample(size=num_points), - "count": np.arange(num_points), - }, - ) - - ens = Ensemble() # initialize an ensemble object - - # Read in the generated lightcurve data - ens.from_pandas( - source_frame=source_table, - object_frame=object_table, - id_col="id", - time_col="time", - flux_col="flux", - err_col="error", - band_col="band", - npartitions=1)