-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
268 lines (223 loc) · 11.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import tensorflow as tf
from Dice import dice
class Model(object):
def __init__(self, user_count, item_count, cate_count, cate_list, predict_batch_size, predict_ads_num):
self.u = tf.placeholder(tf.int32, [None, ]) # [B],用户id
self.i = tf.placeholder(tf.int32, [None, ]) # [B],正样本
self.j = tf.placeholder(tf.int32, [None, ]) # [B],负样本
self.y = tf.placeholder(tf.float32, [None, ]) # [B],label
self.hist_i = tf.placeholder(tf.int32, [None, None]) # [B, T],用户浏览记录
self.sl = tf.placeholder(tf.int32, [None, ]) # [B],真实记录数量
self.lr = tf.placeholder(tf.float64, [])
hidden_units = 128
user_emb_w = tf.get_variable("user_emb_w", [user_count, hidden_units])
item_emb_w = tf.get_variable("item_emb_w", [item_count, hidden_units // 2])
item_b = tf.get_variable("item_b", [item_count],
initializer=tf.constant_initializer(0.0))
cate_emb_w = tf.get_variable("cate_emb_w", [cate_count, hidden_units // 2])
cate_list = tf.convert_to_tensor(cate_list, dtype=tf.int64)
ic = tf.gather(cate_list, self.i) #取出正样本对应的cate
i_emb = tf.concat(values=[
tf.nn.embedding_lookup(item_emb_w, self.i),
tf.nn.embedding_lookup(cate_emb_w, ic),
], axis=1)
i_b = tf.gather(item_b, self.i)
jc = tf.gather(cate_list, self.j)
j_emb = tf.concat([
tf.nn.embedding_lookup(item_emb_w, self.j),
tf.nn.embedding_lookup(cate_emb_w, jc),
], axis=1)
j_b = tf.gather(item_b, self.j)
hc = tf.gather(cate_list, self.hist_i)
h_emb = tf.concat([
tf.nn.embedding_lookup(item_emb_w, self.hist_i),
tf.nn.embedding_lookup(cate_emb_w, hc),
], axis=2)
hist_i = attention(i_emb, h_emb, self.sl)
# -- attention end ---
hist_i = tf.layers.batch_normalization(inputs=hist_i)
hist_i = tf.reshape(hist_i, [-1, hidden_units], name='hist_bn')
hist_i = tf.layers.dense(hist_i, hidden_units, name='hist_fcn')
u_emb_i = hist_i
hist_j = attention(j_emb, h_emb, self.sl)
# -- attention end ---
hist_j = tf.layers.batch_normalization(inputs=hist_j)
hist_j = tf.reshape(hist_j, [-1, hidden_units], name='hist_bn')
hist_j = tf.layers.dense(hist_j, hidden_units, name='hist_fcn', reuse=True)
u_emb_j = hist_j
print(u_emb_i.get_shape().as_list())
print(u_emb_j.get_shape().as_list())
print(i_emb.get_shape().as_list())
print(j_emb.get_shape().as_list())
# -- fcn begin -------
din_i = tf.concat([u_emb_i, i_emb], axis=-1)
din_i = tf.layers.batch_normalization(inputs=din_i, name='b1')
d_layer_1_i = tf.layers.dense(din_i, 80, activation=tf.nn.sigmoid, name='f1')
d_layer_1_i = dice(d_layer_1_i, name='dice_1')
d_layer_2_i = tf.layers.dense(d_layer_1_i, 40, activation=tf.nn.sigmoid, name='f2')
d_layer_2_i = dice(d_layer_2_i, name='dice_2')
d_layer_3_i = tf.layers.dense(d_layer_2_i, 1, activation=None, name='f3')
din_j = tf.concat([u_emb_j, j_emb], axis=-1)
din_j = tf.layers.batch_normalization(inputs=din_j, name='b1', reuse=True)
d_layer_1_j = tf.layers.dense(din_j, 80, activation=tf.nn.sigmoid, name='f1', reuse=True)
d_layer_1_j = dice(d_layer_1_j, name='dice_1')
d_layer_2_j = tf.layers.dense(d_layer_1_j, 40, activation=tf.nn.sigmoid, name='f2', reuse=True)
d_layer_2_j = dice(d_layer_2_j, name='dice_2')
d_layer_3_j = tf.layers.dense(d_layer_2_j, 1, activation=None, name='f3', reuse=True)
d_layer_3_i = tf.reshape(d_layer_3_i, [-1])
d_layer_3_j = tf.reshape(d_layer_3_j, [-1])
x = i_b - j_b + d_layer_3_i - d_layer_3_j # [B]
self.logits = i_b + d_layer_3_i
# prediciton for selected items
# logits for selected item:
item_emb_all = tf.concat([
item_emb_w,
tf.nn.embedding_lookup(cate_emb_w, cate_list)
], axis=1)
item_emb_sub = item_emb_all[:predict_ads_num, :]
item_emb_sub = tf.expand_dims(item_emb_sub, 0)
item_emb_sub = tf.tile(item_emb_sub, [predict_batch_size, 1, 1])
hist_sub = attention_multi_items(item_emb_sub, h_emb, self.sl)
hist_sub = tf.layers.batch_normalization(inputs=hist_sub, name='hist_bn', reuse=tf.AUTO_REUSE)
hist_sub = tf.reshape(hist_sub, [-1, hidden_units])
hist_sub = tf.layers.dense(hist_sub, hidden_units, name='hist_fcn', reuse=tf.AUTO_REUSE)
u_emb_sub = hist_sub
item_emb_sub = tf.reshape(item_emb_sub, [-1, hidden_units])
din_sub = tf.concat([u_emb_sub, item_emb_sub], axis=-1)
din_sub = tf.layers.batch_normalization(inputs=din_sub, name='b1', reuse=True)
d_layer_1_sub = tf.layers.dense(din_sub, 80, activation=tf.nn.sigmoid, name='f1', reuse=True)
d_layer_1_sub = dice(d_layer_1_sub, name='dice_1_sub')
d_layer_2_sub = tf.layers.dense(d_layer_1_sub, 40, activation=tf.nn.sigmoid, name='f2', reuse=True)
d_layer_2_sub = dice(d_layer_2_sub, name='dice_2_sub')
d_layer_3_sub = tf.layers.dense(d_layer_2_sub, 1, activation=None, name='f3', reuse=True)
d_layer_3_sub = tf.reshape(d_layer_3_sub, [-1, predict_ads_num])
self.logits_sub = tf.sigmoid(item_b[:predict_ads_num] + d_layer_3_sub)
self.logits_sub = tf.reshape(self.logits_sub, [-1, predict_ads_num, 1])
# -- fcn end -------
self.mf_auc = tf.reduce_mean(tf.to_float(x > 0))
self.score_i = tf.sigmoid(i_b + d_layer_3_i)
self.score_j = tf.sigmoid(j_b + d_layer_3_j)
self.score_i = tf.reshape(self.score_i, [-1, 1])
self.score_j = tf.reshape(self.score_j, [-1, 1])
self.p_and_n = tf.concat([self.score_i, self.score_j], axis=-1)
print(self.p_and_n.get_shape().as_list())
# Step variable
self.global_step = tf.Variable(0, trainable=False, name='global_step')
self.global_epoch_step = \
tf.Variable(0, trainable=False, name='global_epoch_step')
self.global_epoch_step_op = \
tf.assign(self.global_epoch_step, self.global_epoch_step + 1)
self.loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(
logits=self.logits,
labels=self.y)
)
trainable_params = tf.trainable_variables()
self.opt = tf.train.GradientDescentOptimizer(learning_rate=self.lr)
gradients = tf.gradients(self.loss, trainable_params)
clip_gradients, _ = tf.clip_by_global_norm(gradients, 5)
self.train_op = self.opt.apply_gradients(
zip(clip_gradients, trainable_params), global_step=self.global_step)
def train(self, sess, uij, l):
loss, _ = sess.run([self.loss, self.train_op], feed_dict={
self.u: uij[0],
self.i: uij[1],
self.y: uij[2],
self.hist_i: uij[3],
self.sl: uij[4],
self.lr: l,
})
return loss
def eval(self, sess, uij):
u_auc, socre_p_and_n = sess.run([self.mf_auc, self.p_and_n], feed_dict={
self.u: uij[0],
self.i: uij[1],
self.j: uij[2],
self.hist_i: uij[3],
self.sl: uij[4],
})
return u_auc, socre_p_and_n
def test(self, sess, uij):
return sess.run(self.logits_sub, feed_dict={
self.u: uij[0],
self.i: uij[1],
self.j: uij[2],
self.hist_i: uij[3],
self.sl: uij[4],
})
def save(self, sess, path):
saver = tf.train.Saver()
saver.save(sess, save_path=path)
def restore(self, sess, path):
saver = tf.train.Saver()
saver.restore(sess, save_path=path)
def extract_axis_1(data, ind):
batch_range = tf.range(tf.shape(data)[0])
indices = tf.stack([batch_range, ind], axis=1)
res = tf.gather_nd(data, indices)
return res
def attention(queries, keys, keys_length):
'''
queries: [B, H]
keys: [B, T, H]
keys_length: [B]
'''
queries_hidden_units = queries.get_shape().as_list()[-1]
queries = tf.tile(queries, [1, tf.shape(keys)[1]])
queries = tf.reshape(queries, [-1, tf.shape(keys)[1], queries_hidden_units])
din_all = tf.concat([queries, keys, queries - keys, queries * keys], axis=-1)
d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att', reuse=tf.AUTO_REUSE)
d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att', reuse=tf.AUTO_REUSE)
d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att', reuse=tf.AUTO_REUSE)
d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(keys)[1]])
outputs = d_layer_3_all
# Mask
key_masks = tf.sequence_mask(keys_length, tf.shape(keys)[1]) # [B, T]
key_masks = tf.expand_dims(key_masks, 1) # [B, 1, T]
paddings = tf.ones_like(outputs) * (-2 ** 32 + 1)
outputs = tf.where(key_masks, outputs, paddings) # [B, 1, T]
# Scale
outputs = outputs / (keys.get_shape().as_list()[-1] ** 0.5)
# Activation
outputs = tf.nn.softmax(outputs) # [B, 1, T]
# Weighted sum
outputs = tf.matmul(outputs, keys) # [B, 1, H]
return outputs
def attention_multi_items(queries, keys, keys_length):
'''
queries: [B, N, H] N is the number of ads
keys: [B, T, H]
keys_length: [B]
'''
queries_hidden_units = queries.get_shape().as_list()[-1]
queries_nums = queries.get_shape().as_list()[1]
queries = tf.tile(queries, [1, 1, tf.shape(keys)[1]])
queries = tf.reshape(queries, [-1, queries_nums, tf.shape(keys)[1], queries_hidden_units]) # shape : [B, N, T, H]
max_len = tf.shape(keys)[1]
keys = tf.tile(keys, [1, queries_nums, 1])
keys = tf.reshape(keys, [-1, queries_nums, max_len, queries_hidden_units]) # shape : [B, N, T, H]
din_all = tf.concat([queries, keys, queries - keys, queries * keys], axis=-1)
d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att', reuse=tf.AUTO_REUSE)
d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att', reuse=tf.AUTO_REUSE)
d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att', reuse=tf.AUTO_REUSE)
d_layer_3_all = tf.reshape(d_layer_3_all, [-1, queries_nums, 1, max_len])
outputs = d_layer_3_all
# Mask
key_masks = tf.sequence_mask(keys_length, max_len) # [B, T]
key_masks = tf.tile(key_masks, [1, queries_nums])
key_masks = tf.reshape(key_masks, [-1, queries_nums, 1, max_len]) # shape : [B, N, 1, T]
paddings = tf.ones_like(outputs) * (-2 ** 32 + 1)
outputs = tf.where(key_masks, outputs, paddings) # [B, N, 1, T]
# Scale
outputs = outputs / (keys.get_shape().as_list()[-1] ** 0.5)
# Activation
outputs = tf.nn.softmax(outputs) # [B, N, 1, T]
outputs = tf.reshape(outputs, [-1, 1, max_len])
keys = tf.reshape(keys, [-1, max_len, queries_hidden_units])
# print outputs.get_shape().as_list()
# print keys.get_sahpe().as_list()
# Weighted sum
outputs = tf.matmul(outputs, keys)
outputs = tf.reshape(outputs, [-1, queries_nums, queries_hidden_units]) # [B, N, 1, H]
print(outputs.get_shape().as_list())
return outputs