forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrec_vitstr_none_ce.yml
102 lines (94 loc) · 2.43 KB
/
rec_vitstr_none_ce.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
Global:
use_gpu: True
epoch_num: 20
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/rec/vitstr_none_ce/
save_epoch_step: 1
# evaluation is run every 2000 iterations after the 0th iteration#
eval_batch_step: [0, 2000]
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path: ppocr/utils/EN_symbol_dict.txt
max_text_length: 25
infer_mode: False
use_space_char: False
save_res_path: ./output/rec/predicts_vitstr.txt
Optimizer:
name: Adadelta
epsilon: 1.e-8
rho: 0.95
clip_norm: 5.0
lr:
learning_rate: 1.0
Architecture:
model_type: rec
algorithm: ViTSTR
in_channels: 1
Transform:
Backbone:
name: ViTSTR
scale: tiny
Neck:
name: SequenceEncoder
encoder_type: reshape
Head:
name: CTCHead
Loss:
name: CELoss
with_all: True
ignore_index: &ignore_index 0 # Must be zero or greater than the number of character classes
PostProcess:
name: ViTSTRLabelDecode
Metric:
name: RecMetric
main_indicator: acc
Train:
dataset:
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/training/
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- ViTSTRLabelEncode: # Class handling label
ignore_index: *ignore_index
- GrayRecResizeImg:
image_shape: [224, 224] # W H
resize_type: PIL # PIL or OpenCV
inter_type: 'Image.BICUBIC'
scale: false
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
loader:
shuffle: True
batch_size_per_card: 48
drop_last: True
num_workers: 8
Eval:
dataset:
name: LMDBDataSet
data_dir: ./train_data/data_lmdb_release/evaluation/
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- ViTSTRLabelEncode: # Class handling label
ignore_index: *ignore_index
- GrayRecResizeImg:
image_shape: [224, 224] # W H
resize_type: PIL # PIL or OpenCV
inter_type: 'Image.BICUBIC'
scale: false
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size_per_card: 256
num_workers: 2