-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtemp_qa_infer.py
226 lines (188 loc) · 7.17 KB
/
temp_qa_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
"""
======================================================================
TEMP_QA_INFER ---
TEMPORAL INFERENCE FOR QA.
Author: Zi Liang <[email protected]>
Copyright © 2024, ZiLiang, all rights reserved.
Created: 23 April 2024
======================================================================
"""
# ------------------------ Code --------------------------------------
import os
if __name__ == "__main__":
# os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
# os.environ["CUDA_VISIBLE_DEVICES"] = "4,5,6,7"
# os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
# os.environ["CUDA_VISIBLE_DEVICES"] = "4,5"
# os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
from datasets import load_dataset
import json
import random
from tqdm import tqdm
from gen_pipeline_open import InferObj
from wmt_process import commonly_used_openai_post_process
import os
from collections import OrderedDict
from pprint import pprint
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
from qa_process import *
def main3():
taskls=["piqa","truthful_qa","allenai/ai2_arc",]
score_dict={}
for task in taskls:
# dir_p = "./vary_train_num_qa_infers/"
dir_p = "./qa_dataset_res/"
res_dict = {}
if not os.path.exists(dir_p):
os.makedirs(dir_p)
# ckpt="google/gemma-7b"
ckpt="meta-llama/Meta-Llama-3-8B-Instruct"
res_pth = ckpt + f"___{task}_qa_infer_res.json"
res_pth = res_pth.replace("/", "__").replace(".", "")
if not os.path.exists(dir_p + res_pth):
print(dir_p+res_pth)
print("file not exist.")
res_ls = infer_qa(
ckpt, task, dir_p + res_pth,
# test_set_take_num=1000,
test_set_take_num=500,
mnt=32,
# base_model_name=base_model,
)
else:
print("directly loading")
# from collections import OrderedDict
with open(dir_p + res_pth, "r", encoding="utf8") as f:
res_ls = json.load(
f, object_pairs_hook=OrderedDict)
scores = eval_qaacc(task, res_ls)
res_dict[task + "-----" + res_pth] = scores
print(scores)
score_dict[task]=scores
print(score_dict)
print("OVERALL Save DONE.")
def main2():
base_model = "google/gemma-7b"
task="piqa"
dir_p = "./vary_train_num_qa_infers/"
res_dict = {}
if not os.path.exists(dir_p):
os.makedirs(dir_p)
# ===============================================================
ckpt="./LoRA-LoRD-ckptsvaryTrainNum___321piqaComplex-lord332164256___period2"
res_pth = ckpt + f"___{task}_qa_infer_res.json"
res_pth = res_pth.replace("/", "__").replace(".", "")
if not os.path.exists(dir_p + res_pth):
print(dir_p+res_pth)
print("file not exist.")
res_ls = infer_qa(
ckpt, task, dir_p + res_pth,
# test_set_take_num=1000,
test_set_take_num=500,
mnt=64,
base_model_name=base_model,
)
else:
print("directly loading")
# from collections import OrderedDict
with open(dir_p + res_pth, "r", encoding="utf8") as f:
res_ls = json.load(
f, object_pairs_hook=OrderedDict)
scores = eval_qaacc(task, res_ls)
res_dict[task + "-----" + res_pth] = scores
print(scores)
print("OVERALL Save DONE.")
def main():
base_model = "google/gemma-7b"
taskls = [
"piqa",
# "truthful_qa",
# "allenai/ai2_arc",
]
# mls = ["LoRD-II"]
mls = ["LoRD-IV"]
# mls=["vanilla"]
# mls=["kd"]
# mls=["vanilla", "kd", "LoRD-II", "LoRD-IV"]
# mls = ["google/gemma-2b",]
train_times = [
"1",
# "2",
# "3",
]
train_nums = ["4", "8", "16", "32", "64", "100", "256", "512"]
# train_nums = ["4", "8", "16", "32",]
train_nums = ["32",]
period_nums = ["8"]
dir_p = "./vary_train_num_qa_infers/"
res_dict = {}
if not os.path.exists(dir_p):
os.makedirs(dir_p)
# ===============================================================
for task in taskls:
for train_num in train_nums:
for m in mls:
print(f"Current task: {m}")
for itime in train_times:
for periodnum in period_nums:
prefix = "./vArY_TrAiN_num_LoRA-LoRD-ckpts/"
if m == "google/gemma-2b" or\
m == "google/gemma-7b":
ckpt = m
elif m == "Complex-lord":
ckpt = (
prefix
+ f"varyTrainNum___{train_num}{itime}{task}{m}332164256___period2/"
)
elif "LoRD" in m:
ckpt = (
prefix
+ f"varyTrainNum___{train_num}{itime}{task}{m}112164256___period{periodnum}/"
)
else:
ckpt = (
prefix
+ f"varyTrainNum___{train_num}{itime}{task}{m}332164256___finally"
)
if m == "google/gemma-2b" or\
m=="google/gemma-7b":
res_pth = ckpt + \
f"__{itime}_{task}_qa_infer_res.json"
else:
res_pth = ckpt + f"___{task}_qa_infer_res.json"
res_pth = res_pth.replace("/", "__").replace(".", "")
if not os.path.exists(dir_p + res_pth):
print(dir_p+res_pth)
print("file not exist.")
res_ls = infer_qa(
ckpt, task, dir_p + res_pth,
# test_set_take_num=1000,
test_set_take_num=500,
mnt=64,
base_model_name=base_model,
)
else:
print("directly loading")
# from collections import OrderedDict
with open(dir_p + res_pth, "r", encoding="utf8") as f:
res_ls = json.load(
f, object_pairs_hook=OrderedDict)
scores = eval_qaacc(task, res_ls)
res_dict[task + "-----" + res_pth] = scores
print(scores)
with open(
dir_p + "Overall__qa_varytrain_num_inference_scores.json", "w", encoding="utf8"
) as f:
json.dump(res_dict, f, ensure_ascii=False, indent=4)
print("OVERALL Save DONE.")
pprint(res_dict)
## running entry
if __name__=="__main__":
# main()
# main2()
main3()
print("EVERYTHING DONE.")