forked from mapleneverfade/pytorch-semantic-segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
70 lines (56 loc) · 3.13 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import time
import torch
from torch.autograd import Variable
from torchvision.transforms import ToPILImage
from utils import evalIoU
def eval(args, model, loader_val, criterion, epoch):
print("----- VALIDATING - EPOCH", epoch, "-----")
model.eval()
epoch_loss_val = []
time_val = []
#New confusion matrix
confMatrix = evalIoU.generateMatrixTrainId(evalIoU.args)
perImageStats = {}
nbPixels = 0
for step, (images, labels) in enumerate(loader_val):
start_time = time.time()
if args.cuda:
images = images.cuda()
labels = labels.cuda()
inputs = Variable(images, volatile=True)
targets = Variable(labels, volatile=True)
outputs = model(inputs)
loss = criterion(outputs, targets[:, 0])
epoch_loss_val.append(loss.data[0])
time_val.append(time.time() - start_time)
average_epoch_loss_val = sum(epoch_loss_val) / len(epoch_loss_val)
if args.iouVal: # add to confMatrix
add_to_confMatrix(outputs, labels,confMatrix, perImageStats, nbPixels)
if args.steps_loss > 0 and step % args.steps_loss == 0:
average = sum(epoch_loss_val) / len(epoch_loss_val)
print('VAL loss: {} (epoch: {}, step: {})'.format(average,epoch,step),
"// Avg time/img: %.4f s" % (sum(time_val) / len(time_val) / args.batch_size))
average_epoch_loss_train = sum(epoch_loss_val) / len(epoch_loss_val)
iouAvgStr, iouVal, classScoreList = cal_iou(evalIoU, confMatrix)
print ("EPOCH IoU on VAL set: ", iouAvgStr)
return average_epoch_loss_val, iouVal
def add_to_confMatrix(prediction, groundtruth, confMatrix, perImageStats, nbPixels):
if isinstance(prediction, list): #merge multi-gpu tensors
outputs_cpu = prediction[0].cpu()
for i in range(1,len(outputs)):
outputs_cpu = torch.cat((outputs_cpu, prediction[i].cpu()), 0)
else:
outputs_cpu = prediction.cpu()
for i in range(0, outputs_cpu.size(0)): #args.batch_size,evaluate iou of each batch
prediction = ToPILImage()(outputs_cpu[i].max(0)[1].data.unsqueeze(0).byte())
groundtruth_image = ToPILImage()(groundtruth[i].cpu().byte())
nbPixels += evalIoU.evaluatePairPytorch(prediction, groundtruth_image, confMatrix, perImageStats, evalIoU.args)
def cal_iou(evalIoU, confMatrix):
iou = 0
classScoreList = {}
for label in evalIoU.args.evalLabels:
labelName = evalIoU.trainId2label[label].name
classScoreList[labelName] = evalIoU.getIouScoreForTrainLabel(label, confMatrix, evalIoU.args)
iouAvgStr = evalIoU.getColorEntry(evalIoU.getScoreAverage(classScoreList, evalIoU.args), evalIoU.args) + "{avg:5.3f}".format(avg=evalIoU.getScoreAverage(classScoreList, evalIoU.args)) + evalIoU.args.nocol
iou = float(evalIoU.getScoreAverage(classScoreList, evalIoU.args))
return iouAvgStr, iou, classScoreList