-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathmasking.py
125 lines (105 loc) · 4.22 KB
/
masking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import random
import warnings
import kornia
import numpy as np
import torch
from einops import repeat
from torch import nn, Tensor
from torch.nn import functional as F
warnings.filterwarnings("ignore", category=DeprecationWarning)
def resize(input,
size=None,
scale_factor=None,
mode='nearest',
align_corners=None,
warning=True):
if warning:
if size is not None and align_corners:
input_h, input_w = tuple(int(x) for x in input.shape[2:])
output_h, output_w = tuple(int(x) for x in size)
if output_h > input_h or output_w > output_h:
if ((output_h > 1 and output_w > 1 and input_h > 1
and input_w > 1) and (output_h - 1) % (input_h - 1)
and (output_w - 1) % (input_w - 1)):
warnings.warn(
f'When align_corners={align_corners}, '
'the output would more aligned if '
f'input size {(input_h, input_w)} is `x+1` and '
f'out size {(output_h, output_w)} is `nx+1`')
return F.interpolate(input, size, scale_factor, mode, align_corners)
def strong_transform(param, data):
data = color_jitter(
color_jitter=param['color_jitter'],
s=param['color_jitter_s'],
p=param['color_jitter_p'],
mean=param['mean'],
std=param['std'],
data=data)
data = gaussian_blur(blur=param['blur'], data=data)
return data
def denorm(img, mean, std):
return img.mul(std).add(mean)
def renorm(img, mean, std):
return img.sub(mean).div(std)
def color_jitter(color_jitter, mean, std, data, s=.25, p=.2):
# s is the strength of colorjitter
if color_jitter > p:
mean = torch.as_tensor(mean, device=data.device)
mean = repeat(mean, 'C -> B C 1 1', B=data.shape[0], C=3)
std = torch.as_tensor(std, device=data.device)
std = repeat(std, 'C -> B C 1 1', B=data.shape[0], C=3)
if isinstance(s, dict):
seq = nn.Sequential(kornia.augmentation.ColorJitter(**s))
else:
seq = nn.Sequential(
kornia.augmentation.ColorJitter(
brightness=s, contrast=s, saturation=s, hue=s))
data = denorm(data, mean, std)
data = seq(data)
data = renorm(data, mean, std)
return data
def gaussian_blur(blur, data):
if blur > 0.5:
sigma = np.random.uniform(0.15, 1.15)
kernel_size_y = int(
np.floor(
np.ceil(0.1 * data.shape[2]) - 0.5 +
np.ceil(0.1 * data.shape[2]) % 2))
kernel_size_x = int(
np.floor(
np.ceil(0.1 * data.shape[3]) - 0.5 +
np.ceil(0.1 * data.shape[3]) % 2))
kernel_size = (kernel_size_y, kernel_size_x)
seq = nn.Sequential(
kornia.filters.GaussianBlur2d(
kernel_size=kernel_size, sigma=(sigma, sigma)))
data = seq(data)
return data
class Masking(nn.Module):
def __init__(self, block_size, ratio, color_jitter_s, color_jitter_p, blur, mean, std):
super(Masking, self).__init__()
self.block_size = block_size
self.ratio = ratio
self.augmentation_params = None
if (color_jitter_p > 0 and color_jitter_s > 0) or blur:
print('[Masking] Use color augmentation.')
self.augmentation_params = {
'color_jitter': random.uniform(0, 1),
'color_jitter_s': color_jitter_s,
'color_jitter_p': color_jitter_p,
'blur': random.uniform(0, 1) if blur else 0,
'mean': mean,
'std': std
}
@torch.no_grad()
def forward(self, img: Tensor):
img = img.clone()
B, _, H, W = img.shape
if self.augmentation_params is not None:
img = strong_transform(self.augmentation_params, data=img.clone())
mshape = B, 1, round(H / self.block_size), round(W / self.block_size)
input_mask = torch.rand(mshape, device=img.device)
input_mask = (input_mask > self.ratio).float()
input_mask = resize(input_mask, size=(H, W))
masked_img = img * input_mask
return masked_img