-
Notifications
You must be signed in to change notification settings - Fork 10
/
klib.lua
677 lines (628 loc) · 19.7 KB
/
klib.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
--[[
The MIT License
Copyright (c) 2011, Attractive Chaos <[email protected]>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
]]--
--[[
This is a Lua library, more exactly a collection of Lua snippets, covering
utilities (e.g. getopt), string operations (e.g. split), statistics (e.g.
Fisher's exact test), special functions (e.g. logarithm gamma) and matrix
operations (e.g. Gauss-Jordan elimination). The routines are designed to be
as independent as possible, such that one can copy-paste relevant pieces of
code without worrying about additional library dependencies.
If you use routines from this library, please include the licensing
information above where appropriate.
]]--
--[[
Library functions and dependencies. "a>b" means "a is required by b"; "b<a"
means "b depends on a".
os.getopt()
string:split()
io.xopen()
table.ksmall()
table.shuffle()
math.lgamma() >math.lbinom() >math.igamma()
math.igamma() <math.lgamma() >matrix.chi2()
math.erfc()
math.lbinom() <math.lgamma() >math.fisher_exact()
math.bernstein_poly() <math.lbinom()
math.fisher_exact() <math.lbinom()
math.jackknife()
math.pearson()
math.spearman()
math.fmin()
matrix
matrix.add()
matrix.T() >matrix.mul()
matrix.mul() <matrix.T()
matrix.tostring()
matrix.chi2() <math.igamma()
matrix.solve()
]]--
-- Description: getopt() translated from the BSD getopt(); compatible with the default Unix getopt()
--[[ Example:
for o, a in os.getopt(arg, 'a:b') do
print(o, a)
end
]]--
function os.getopt(args, ostr)
local arg, place = nil, 0;
return function ()
if place == 0 then -- update scanning pointer
place = 1
if #args == 0 or args[1]:sub(1, 1) ~= '-' then place = 0; return nil end
if #args[1] >= 2 then
place = place + 1
if args[1]:sub(2, 2) == '-' then -- found "--"
place = 0
table.remove(args, 1);
return nil;
end
end
end
local optopt = args[1]:sub(place, place);
place = place + 1;
local oli = ostr:find(optopt);
if optopt == ':' or oli == nil then -- unknown option
if optopt == '-' then return nil end
if place > #args[1] then
table.remove(args, 1);
place = 0;
end
return '?';
end
oli = oli + 1;
if ostr:sub(oli, oli) ~= ':' then -- do not need argument
arg = nil;
if place > #args[1] then
table.remove(args, 1);
place = 0;
end
else -- need an argument
if place <= #args[1] then -- no white space
arg = args[1]:sub(place);
else
table.remove(args, 1);
if #args == 0 then -- an option requiring argument is the last one
place = 0;
if ostr:sub(1, 1) == ':' then return ':' end
return '?';
else arg = args[1] end
end
table.remove(args, 1);
place = 0;
end
return optopt, arg;
end
end
-- Description: string split
function string:split(sep, n)
local a, start = {}, 1;
sep = sep or "%s+";
repeat
local b, e = self:find(sep, start);
if b == nil then
table.insert(a, self:sub(start));
break
end
a[#a+1] = self:sub(start, b - 1);
start = e + 1;
if n and #a == n then
table.insert(a, self:sub(start));
break
end
until start > #self;
return a;
end
-- Description: smart file open
function io.xopen(fn, mode)
mode = mode or 'r';
if fn == nil then return io.stdin;
elseif fn == '-' then return (mode == 'r' and io.stdin) or io.stdout;
elseif fn:sub(-3) == '.gz' then return (mode == 'r' and io.popen('gzip -dc ' .. fn, 'r')) or io.popen('gzip > ' .. fn, 'w');
elseif fn:sub(-4) == '.bz2' then return (mode == 'r' and io.popen('bzip2 -dc ' .. fn, 'r')) or io.popen('bgzip2 > ' .. fn, 'w');
else return io.open(fn, mode) end
end
-- Description: find the k-th smallest element in an array (Ref. http://ndevilla.free.fr/median/)
function table.ksmall(arr, k)
local low, high = 1, #arr;
while true do
if high <= low then return arr[k] end
if high == low + 1 then
if arr[high] < arr[low] then arr[high], arr[low] = arr[low], arr[high] end;
return arr[k];
end
local mid = math.floor((high + low) / 2);
if arr[high] < arr[mid] then arr[mid], arr[high] = arr[high], arr[mid] end
if arr[high] < arr[low] then arr[low], arr[high] = arr[high], arr[low] end
if arr[low] < arr[mid] then arr[low], arr[mid] = arr[mid], arr[low] end
arr[mid], arr[low+1] = arr[low+1], arr[mid];
local ll, hh = low + 1, high;
while true do
repeat ll = ll + 1 until arr[ll] >= arr[low]
repeat hh = hh - 1 until arr[low] >= arr[hh]
if hh < ll then break end
arr[ll], arr[hh] = arr[hh], arr[ll];
end
arr[low], arr[hh] = arr[hh], arr[low];
if hh <= k then low = ll end
if hh >= k then high = hh - 1 end
end
end
-- Description: shuffle/permutate an array
function table.shuffle(a)
for i = #a, 1, -1 do
local j = math.random(i)
a[j], a[i] = a[i], a[j]
end
end
--
-- Mathematics
--
-- Description: log gamma function
-- Required by: math.lbinom()
-- Reference: AS245, 2nd algorithm, http://lib.stat.cmu.edu/apstat/245
function math.lgamma(z)
local x;
x = 0.1659470187408462e-06 / (z+7);
x = x + 0.9934937113930748e-05 / (z+6);
x = x - 0.1385710331296526 / (z+5);
x = x + 12.50734324009056 / (z+4);
x = x - 176.6150291498386 / (z+3);
x = x + 771.3234287757674 / (z+2);
x = x - 1259.139216722289 / (z+1);
x = x + 676.5203681218835 / z;
x = x + 0.9999999999995183;
return math.log(x) - 5.58106146679532777 - z + (z-0.5) * math.log(z+6.5);
end
-- Description: regularized incomplete gamma function
-- Dependent on: math.lgamma()
--[[
Formulas are taken from Wiki, with additional input from Numerical
Recipes in C (for modified Lentz's algorithm) and AS245
(http://lib.stat.cmu.edu/apstat/245).
A good online calculator is available at:
http://www.danielsoper.com/statcalc/calc23.aspx
It calculates upper incomplete gamma function, which equals
math.igamma(s,z,true)*math.exp(math.lgamma(s))
]]--
function math.igamma(s, z, complement)
local function _kf_gammap(s, z)
local sum, x = 1, 1;
for k = 1, 100 do
x = x * z / (s + k);
sum = sum + x;
if x / sum < 1e-14 then break end
end
return math.exp(s * math.log(z) - z - math.lgamma(s + 1.) + math.log(sum));
end
local function _kf_gammaq(s, z)
local C, D, f, TINY;
f = 1. + z - s; C = f; D = 0.; TINY = 1e-290;
-- Modified Lentz's algorithm for computing continued fraction. See Numerical Recipes in C, 2nd edition, section 5.2
for j = 1, 100 do
local d;
local a, b = j * (s - j), j*2 + 1 + z - s;
D = b + a * D;
if D < TINY then D = TINY end
C = b + a / C;
if C < TINY then C = TINY end
D = 1. / D;
d = C * D;
f = f * d;
if math.abs(d - 1) < 1e-14 then break end
end
return math.exp(s * math.log(z) - z - math.lgamma(s) - math.log(f));
end
if complement then
return ((z <= 1 or z < s) and 1 - _kf_gammap(s, z)) or _kf_gammaq(s, z);
else
return ((z <= 1 or z < s) and _kf_gammap(s, z)) or (1 - _kf_gammaq(s, z));
end
end
math.M_SQRT2 = 1.41421356237309504880 -- sqrt(2)
math.M_SQRT1_2 = 0.70710678118654752440 -- 1/sqrt(2)
-- Description: complement error function erfc(x): \Phi(x) = 0.5 * erfc(-x/M_SQRT2)
function math.erfc(x)
local z = math.abs(x) * math.M_SQRT2
if z > 37 then return (x > 0 and 0) or 2 end
local expntl = math.exp(-0.5 * z * z)
local p
if z < 10. / math.M_SQRT2 then -- for small z
p = expntl * ((((((.03526249659989109 * z + .7003830644436881) * z + 6.37396220353165) * z + 33.912866078383)
* z + 112.0792914978709) * z + 221.2135961699311) * z + 220.2068679123761)
/ (((((((.08838834764831844 * z + 1.755667163182642) * z + 16.06417757920695) * z + 86.78073220294608)
* z + 296.5642487796737) * z + 637.3336333788311) * z + 793.8265125199484) * z + 440.4137358247522);
else p = expntl / 2.506628274631001 / (z + 1. / (z + 2. / (z + 3. / (z + 4. / (z + .65))))) end
return (x > 0 and 2 * p) or 2 * (1 - p)
end
-- Description: log binomial coefficient
-- Dependent on: math.lgamma()
-- Required by: math.fisher_exact()
function math.lbinom(n, m)
if m == nil then
local a = {};
a[0], a[n] = 0, 0;
local t = math.lgamma(n+1);
for m = 1, n-1 do a[m] = t - math.lgamma(m+1) - math.lgamma(n-m+1) end
return a;
else return math.lgamma(n+1) - math.lgamma(m+1) - math.lgamma(n-m+1) end
end
-- Description: Berstein polynomials (mainly for Bezier curves)
-- Dependent on: math.lbinom()
-- Note: to compute derivative: let beta_new[i]=beta[i+1]-beta[i]
function math.bernstein_poly(beta)
local n = #beta - 1;
local lbc = math.lbinom(n); -- log binomial coefficients
return function (t)
assert(t >= 0 and t <= 1);
if t == 0 then return beta[1] end
if t == 1 then return beta[n+1] end
local sum, logt, logt1 = 0, math.log(t), math.log(1-t);
for i = 0, n do sum = sum + beta[i+1] * math.exp(lbc[i] + i * logt + (n-i) * logt1) end
return sum;
end
end
-- Description: Fisher's exact test
-- Dependent on: math.lbinom()
-- Return: left-, right- and two-tail P-values
--[[
Fisher's exact test for 2x2 congintency tables:
n11 n12 | n1_
n21 n22 | n2_
-----------+----
n_1 n_2 | n
Reference: http://www.langsrud.com/fisher.htm
]]--
function math.fisher_exact(n11, n12, n21, n22)
local aux; -- keep the states of n* for acceleration
-- Description: hypergeometric function
local function hypergeo(n11, n1_, n_1, n)
return math.exp(math.lbinom(n1_, n11) + math.lbinom(n-n1_, n_1-n11) - math.lbinom(n, n_1));
end
-- Description: incremental hypergeometric function
-- Note: aux = {n11, n1_, n_1, n, p}
local function hypergeo_inc(n11, n1_, n_1, n)
if n1_ ~= 0 or n_1 ~= 0 or n ~= 0 then
aux = {n11, n1_, n_1, n, 1};
else -- then only n11 is changed
local mod;
_, mod = math.modf(n11 / 11);
if mod ~= 0 and n11 + aux[4] - aux[2] - aux[3] ~= 0 then
if n11 == aux[1] + 1 then -- increase by 1
aux[5] = aux[5] * (aux[2] - aux[1]) / n11 * (aux[3] - aux[1]) / (n11 + aux[4] - aux[2] - aux[3]);
aux[1] = n11;
return aux[5];
end
if n11 == aux[1] - 1 then -- descrease by 1
aux[5] = aux[5] * aux[1] / (aux[2] - n11) * (aux[1] + aux[4] - aux[2] - aux[3]) / (aux[3] - n11);
aux[1] = n11;
return aux[5];
end
end
aux[1] = n11;
end
aux[5] = hypergeo(aux[1], aux[2], aux[3], aux[4]);
return aux[5];
end
-- Description: computing the P-value by Fisher's exact test
local max, min, left, right, n1_, n_1, n, two, p, q, i, j;
n1_, n_1, n = n11 + n12, n11 + n21, n11 + n12 + n21 + n22;
max = (n_1 < n1_ and n_1) or n1_; -- max n11, for the right tail
min = n1_ + n_1 - n;
if min < 0 then min = 0 end -- min n11, for the left tail
two, left, right = 1, 1, 1;
if min == max then return 1 end -- no need to do test
q = hypergeo_inc(n11, n1_, n_1, n); -- the probability of the current table
-- left tail
i, left, p = min + 1, 0, hypergeo_inc(min, 0, 0, 0);
while p < 0.99999999 * q do
left, p, i = left + p, hypergeo_inc(i, 0, 0, 0), i + 1;
end
i = i - 1;
if p < 1.00000001 * q then left = left + p;
else i = i - 1 end
-- right tail
j, right, p = max - 1, 0, hypergeo_inc(max, 0, 0, 0);
while p < 0.99999999 * q do
right, p, j = right + p, hypergeo_inc(j, 0, 0, 0), j - 1;
end
j = j + 1;
if p < 1.00000001 * q then right = right + p;
else j = j + 1 end
-- two-tail
two = left + right;
if two > 1 then two = 1 end
-- adjust left and right
if math.abs(i - n11) < math.abs(j - n11) then right = 1 - left + q;
else left = 1 - right + q end
return left, right, two;
end
-- Description: Delete-m Jackknife
--[[
Given g groups of values with a statistics estimated from m[i] samples in
i-th group being t[i], compute the mean and the variance. t0 below is the
estimate from all samples. Reference:
Busing et al. (1999) Delete-m Jackknife for unequal m. Statistics and Computing, 9:3-8.
]]--
function math.jackknife(g, m, t, t0)
local h, n, sum = {}, 0, 0;
for j = 1, g do n = n + m[j] end
if t0 == nil then -- When t0 is absent, estimate it in a naive way
t0 = 0;
for j = 1, g do t0 = t0 + m[j] * t[j] end
t0 = t0 / n;
end
local mean, var = 0, 0;
for j = 1, g do
h[j] = n / m[j];
mean = mean + (1 - m[j] / n) * t[j];
end
mean = g * t0 - mean; -- Eq. (8)
for j = 1, g do
local x = h[j] * t0 - (h[j] - 1) * t[j] - mean;
var = var + 1 / (h[j] - 1) * x * x;
end
var = var / g;
return mean, var;
end
-- Description: Pearson correlation coefficient
-- Input: a is an n*2 table
function math.pearson(a)
-- compute the mean
local x1, y1 = 0, 0
for _, v in pairs(a) do
x1, y1 = x1 + v[1], y1 + v[2]
end
-- compute the coefficient
x1, y1 = x1 / #a, y1 / #a
local x2, y2, xy = 0, 0, 0
for _, v in pairs(a) do
local tx, ty = v[1] - x1, v[2] - y1
xy, x2, y2 = xy + tx * ty, x2 + tx * tx, y2 + ty * ty
end
return xy / math.sqrt(x2) / math.sqrt(y2)
end
-- Description: Spearman correlation coefficient
function math.spearman(a)
local function aux_func(t) -- auxiliary function
return (t == 1 and 0) or (t*t - 1) * t / 12
end
for _, v in pairs(a) do v.r = {} end
local T, S = {}, {}
-- compute the rank
for k = 1, 2 do
table.sort(a, function(u,v) return u[k]<v[k] end)
local same = 1
T[k] = 0
for i = 2, #a + 1 do
if i <= #a and a[i-1][k] == a[i][k] then same = same + 1
else
local rank = (i-1) * 2 - same + 1
for j = i - same, i - 1 do a[j].r[k] = rank end
if same > 1 then T[k], same = T[k] + aux_func(same), 1 end
end
end
S[k] = aux_func(#a) - T[k]
end
-- compute the coefficient
local sum = 0
for _, v in pairs(a) do -- TODO: use nested loops to reduce loss of precision
local t = (v.r[1] - v.r[2]) / 2
sum = sum + t * t
end
return (S[1] + S[2] - sum) / 2 / math.sqrt(S[1] * S[2])
end
-- Description: Hooke-Jeeves derivative-free optimization
function math.fmin(func, x, data, r, eps, max_calls)
local n, n_calls = #x, 0;
r = r or 0.5;
eps = eps or 1e-7;
max_calls = max_calls or 50000
function fmin_aux(x1, data, fx1, dx) -- auxiliary function
local ftmp;
for k = 1, n do
x1[k] = x1[k] + dx[k];
local ftmp = func(x1, data); n_calls = n_calls + 1;
if ftmp < fx1 then fx1 = ftmp;
else -- search the opposite direction
dx[k] = -dx[k];
x1[k] = x1[k] + dx[k] + dx[k];
ftmp = func(x1, data); n_calls = n_calls + 1;
if ftmp < fx1 then fx1 = ftmp
else x1[k] = x1[k] - dx[k] end -- back to the original x[k]
end
end
return fx1; -- here: fx1=f(n,x1)
end
local dx, x1 = {}, {};
for k = 1, n do -- initial directions, based on MGJ
dx[k] = math.abs(x[k]) * r;
if dx[k] == 0 then dx[k] = r end;
end
local radius = r;
local fx1, fx;
fx = func(x, data); fx1 = fx; n_calls = n_calls + 1;
while true do
for i = 1, n do x1[i] = x[i] end; -- x1 = x
fx1 = fmin_aux(x1, data, fx, dx);
while fx1 < fx do
for k = 1, n do
local t = x[k];
dx[k] = (x1[k] > x[k] and math.abs(dx[k])) or -math.abs(dx[k]);
x[k] = x1[k];
x1[k] = x1[k] + x1[k] - t;
end
fx = fx1;
if n_calls >= max_calls then break end
fx1 = func(x1, data); n_calls = n_calls + 1;
fx1 = fmin_aux(x1, data, fx1, dx);
if fx1 >= fx then break end
local kk = n;
for k = 1, n do
if math.abs(x1[k] - x[k]) > .5 * math.abs(dx[k]) then
kk = k;
break;
end
end
if kk == n then break end
end
if radius >= eps then
if n_calls >= max_calls then break end
radius = radius * r;
for k = 1, n do dx[k] = dx[k] * r end
else break end
end
return fx1, n_calls;
end
--
-- Matrix
--
matrix = {}
-- Description: matrix transpose
-- Required by: matrix.mul()
function matrix.T(a)
local m, n, x = #a, #a[1], {};
for i = 1, n do
x[i] = {};
for j = 1, m do x[i][j] = a[j][i] end
end
return x;
end
-- Description: matrix add
function matrix.add(a, b)
assert(#a == #b and #a[1] == #b[1]);
local m, n, x = #a, #a[1], {};
for i = 1, m do
x[i] = {};
local ai, bi, xi = a[i], b[i], x[i];
for j = 1, n do xi[j] = ai[j] + bi[j] end
end
return x;
end
-- Description: matrix mul
-- Dependent on: matrix.T()
-- Note: much slower without transpose
function matrix.mul(a, b)
assert(#a[1] == #b);
local m, n, p, x = #a, #a[1], #b[1], {};
local c = matrix.T(b); -- transpose for efficiency
for i = 1, m do
x[i] = {}
local xi = x[i];
for j = 1, p do
local sum, ai, cj = 0, a[i], c[j];
for k = 1, n do sum = sum + ai[k] * cj[k] end
xi[j] = sum;
end
end
return x;
end
-- Description: matrix print
function matrix.tostring(a)
local z = {};
for i = 1, #a do
z[i] = table.concat(a[i], "\t");
end
return table.concat(z, "\n");
end
-- Description: chi^2 test for contingency tables
-- Dependent on: math.igamma()
function matrix.chi2(a)
if #a == 2 and #a[1] == 2 then -- 2x2 table
local x, z
x = (a[1][1] + a[1][2]) * (a[2][1] + a[2][2]) * (a[1][1] + a[2][1]) * (a[1][2] + a[2][2])
if x == 0 then return 0, 1, false end
z = a[1][1] * a[2][2] - a[1][2] * a[2][1]
z = (a[1][1] + a[1][2] + a[2][1] + a[2][2]) * z * z / x
return z, math.igamma(.5, .5 * z, true), true
else -- generic table
local rs, cs, n, m, N, z = {}, {}, #a, #a[1], 0, 0
for i = 1, n do rs[i] = 0 end
for j = 1, m do cs[j] = 0 end
for i = 1, n do -- compute column sum and row sum
for j = 1, m do cs[j], rs[i] = cs[j] + a[i][j], rs[i] + a[i][j] end
end
for i = 1, n do N = N + rs[i] end
for i = 1, n do -- compute the chi^2 statistics
for j = 1, m do
local E = rs[i] * cs[j] / N;
z = z + (a[i][j] - E) * (a[i][j] - E) / E
end
end
return z, math.igamma(.5 * (n-1) * (m-1), .5 * z, true), true;
end
end
-- Description: Gauss-Jordan elimination (solving equations; computing inverse)
-- Note: on return, a[n][n] is the inverse; b[n][m] is the solution
-- Reference: Section 2.1, Numerical Recipes in C, 2nd edition
function matrix.solve(a, b)
assert(#a == #a[1]);
local n, m = #a, (b and #b[1]) or 0;
local xc, xr, ipiv = {}, {}, {};
local ic, ir;
for j = 1, n do ipiv[j] = 0 end
for i = 1, n do
local big = 0;
for j = 1, n do
local aj = a[j];
if ipiv[j] ~= 1 then
for k = 1, n do
if ipiv[k] == 0 then
if math.abs(aj[k]) >= big then
big = math.abs(aj[k]);
ir, ic = j, k;
end
elseif ipiv[k] > 1 then return -2 end -- singular matrix
end
end
end
ipiv[ic] = ipiv[ic] + 1;
if ir ~= ic then
for l = 1, n do a[ir][l], a[ic][l] = a[ic][l], a[ir][l] end
if b then
for l = 1, m do b[ir][l], b[ic][l] = b[ic][l], b[ir][l] end
end
end
xr[i], xc[i] = ir, ic;
if a[ic][ic] == 0 then return -3 end -- singular matrix
local pivinv = 1 / a[ic][ic];
a[ic][ic] = 1;
for l = 1, n do a[ic][l] = a[ic][l] * pivinv end
if b then
for l = 1, n do b[ic][l] = b[ic][l] * pivinv end
end
for ll = 1, n do
if ll ~= ic then
local tmp = a[ll][ic];
a[ll][ic] = 0;
local all, aic = a[ll], a[ic];
for l = 1, n do all[l] = all[l] - aic[l] * tmp end
if b then
local bll, bic = b[ll], b[ic];
for l = 1, m do bll[l] = bll[l] - bic[l] * tmp end
end
end
end
end
for l = n, 1, -1 do
if xr[l] ~= xc[l] then
for k = 1, n do a[k][xr[l]], a[k][xc[l]] = a[k][xc[l]], a[k][xr[l]] end
end
end
return 0;
end