-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathChebyshev_gpu_kernels.cu
458 lines (391 loc) · 13 KB
/
Chebyshev_gpu_kernels.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
#ifdef USE_GPU
#include <cuda.h>
#include "cublas_v2.h"
#include "magma_operators.h"
// Array element correspondig to matrix element (i,j) in column major order
#define IDX( i, j, LD ) ((i) + (j)*(LD))
//-------------------
// external variables
extern cublasHandle_t myHandle;
extern cudaStream_t cublas_default, stream[];
extern const int nStreams;
//----------------------------------------------
// Prototypes:
__host__ void
acummulate_vec_ax_async(
const int n, const int ld, const int k,
const cuDoubleComplex * __restrict__ vecA,
const cuDoubleComplex * __restrict__ vecsX,
const cuDoubleComplex * __restrict__ vecY,
const cudaStream_t stream );
// __global__ void
// acummulate_vec_ax_kernel(
// const int n, const int ld, const int k,
// const cuDoubleComplex * __restrict__ vecA,
// const cuDoubleComplex * __restrict__ vecsX,
// cuDoubleComplex * __restrict__ vecY );
__global__ void
acummulate_vec_ax_kernel(
const int n, const int ld, const int k,
const cuDoubleComplex * __restrict__ vecsX,
cuDoubleComplex * __restrict__ vecY );
__host__ void
Zvec_subtract(
const int n,
const cuDoubleComplex * x,
const cuDoubleComplex * y,
cuDoubleComplex * z,
const cudaStream_t stream );
__global__ void
Zvec_sub_yinplace_kernel(
const int n,
const cuDoubleComplex * __restrict__ x,
cuDoubleComplex * __restrict__ y );
__global__ void
Zvec_sub_kernel(
const int n,
const cuDoubleComplex * __restrict__ x,
const cuDoubleComplex * __restrict__ y,
cuDoubleComplex * __restrict__ z );
__host__ void
fused_Zxpby_and_subtract(
const int n,
const cuDoubleComplex * x,
const cuDoubleComplex a,
const cuDoubleComplex * __restrict__ y,
cuDoubleComplex * __restrict__ z,
cuDoubleComplex * d,
const cudaStream_t stream );
__global__ void
fused_Zxpby_and_subtract_kernel(
const int n,
const cuDoubleComplex * x,
const cuDoubleComplex a,
const cuDoubleComplex * __restrict__ y,
cuDoubleComplex * __restrict__ z,
cuDoubleComplex * d );
__host__ void
Zaxpby_async(
const int n,
const cuDoubleComplex & a,
const cuDoubleComplex * __restrict__ x,
const cuDoubleComplex & b,
const cuDoubleComplex * __restrict__ y,
cuDoubleComplex * __restrict__ z,
const cudaStream_t stream );
__global__ void
Zaxpby_async_kernel(
const int n,
const cuDoubleComplex a,
const cuDoubleComplex * __restrict__ x,
const cuDoubleComplex b,
const cuDoubleComplex * __restrict__ y,
cuDoubleComplex * __restrict__ z);
__host__ void
hadamard_minus(
const int n,
const int m,
const double * const __restrict__ x,
const double * const __restrict__ y,
double * const __restrict__ z,
const cudaStream_t stream );
__global__ void
hadamard_minus_kernel(
const int n,
const double * const __restrict__ x,
const double * const __restrict__ y,
double * const __restrict__ z);
__host__ void
calculate_A(
const int n,
const int ld,
const cuDoubleComplex * const __restrict__ bra,
const cuDoubleComplex * const __restrict__ ket,
double * const __restrict__ A,
const cudaStream_t stream );
__global__ void
calculate_rho_kernel(
const int n,
const int ld,
const cuDoubleComplex * const __restrict__ bra,
const cuDoubleComplex * const __restrict__ ket,
double * const __restrict__ rho );
//----------------------------------------------
// Functions / kernels:
//----------------------------------------------
// __constant__ version
// MAX_ORDER must have the same value it has in Fortran code
#define MAX_ORDER 25
__constant__ cuDoubleComplex cA[MAX_ORDER];
__host__ void
acummulate_vec_ax_async(
const int n, const int ld, const int k,
const cuDoubleComplex * __restrict__ vecA,
const cuDoubleComplex * __restrict__ vecsX,
cuDoubleComplex * __restrict__ vecY,
const cudaStream_t stream )
{
const int Threads = 128; // Threads per block ## opt. for SM >= 3.0
const int Blocks = (n + Threads-1) / Threads; // We need enough blocks to span all the elements
cudaMemcpyToSymbolAsync( cA, vecA, k, 0, cudaMemcpyDeviceToDevice, stream );
acummulate_vec_ax_kernel <<< Blocks, Threads, 0, stream >>> (n, ld, k, vecsX, vecY);
}
//- - - - - - - - - - - - - - - - - - - - - - - -
__global__ void
acummulate_vec_ax_kernel(
const int n, const int ld, const int k,
// const cuDoubleComplex * __restrict__ vecA, // using constant memory now
const cuDoubleComplex * __restrict__ vecsX,
cuDoubleComplex * __restrict__ vecY )
{
const int i = blockIdx.x*blockDim.x + threadIdx.x;
if( i < n )
{
cuDoubleComplex res = make_cuDoubleComplex( 0.0, 0.0 );
for( int j=0; j<k; ++j )
{
res += cA[j] * vecsX[i];
vecsX += ld;
}
vecY[i] = res;
}
}
// //----------------------------------------------
// // __shared__ version
// __host__ void
// acummulate_vec_ax_async(
// const int n, const int ld, const int k,
// const cuDoubleComplex * __restrict__ vecA,
// const cuDoubleComplex * __restrict__ vecsX,
// cuDoubleComplex * __restrict__ vecY,
// const cudaStream_t stream )
// {
// const int Threads = 128; // Threads per block ## opt. for SM >= 3.0
// const int Blocks = (n + Threads-1) / Threads; // We need enough blocks to span all the elements
//
// acummulate_vec_ax_kernel <<< Blocks, Threads, 0, stream >>> (n, ld, k, vecA, vecsX, vecY);
// }
//
// //- - - - - - - - - - - - - - - - - - - - - - - -
// __global__ void
// acummulate_vec_ax_kernel(
// const int n, const int ld, const int k,
// const cuDoubleComplex * __restrict__ vecA,
// const cuDoubleComplex * __restrict__ vecsX,
// cuDoubleComplex * __restrict__ vecY )
// {
// const int i = blockIdx.x*blockDim.x + threadIdx.x;
// __shared__ cuDoubleComplex A[MAX_ORDER];
//
// // load vecA into A
// if ((threadIdx.x == 0) && (i < k))
// A[i] = vecA[i];
// __syncthreads();
//
// if( i < n )
// {
// cuDoubleComplex res = make_cuDoubleComplex( 0.0, 0.0 );
// for( int j=0; j<k; ++j )
// {
// res += A[j] * vecsX[i];
// vecsX += ld;
// }
//
// vecY[i] = res;
// }
// }
//----------------------------------------------
__host__ void
Zvec_subtract(
const int n,
const cuDoubleComplex * x,
const cuDoubleComplex * y,
cuDoubleComplex * z,
const cudaStream_t stream )
{
const int Threads = 128; // Threads per block ## opt. for SM >= 3.0
const int Blocks = (n + Threads-1) / Threads; // We need enough blocks to span all the elements
if( z == y )
Zvec_sub_yinplace_kernel <<< Blocks, Threads, 0, stream >>> (n, x, z);
// else if( z == x )
// // not used
else
Zvec_sub_kernel <<< Blocks, Threads, 0, stream >>> (n, x, y, z);
}
//- - - - - - - - - - - - - - - - - - - - - - - -
__global__ void
Zvec_sub_yinplace_kernel(
const int n,
const cuDoubleComplex * __restrict__ x,
cuDoubleComplex * __restrict__ y )
{
const int i = blockIdx.x*blockDim.x + threadIdx.x;
if( i < n )
y[i] = x[i] - y[i];
}
//- - - - - - - - - - - - - - - - - - - - - - - -
__global__ void
Zvec_sub_kernel(
const int n,
const cuDoubleComplex * __restrict__ x,
const cuDoubleComplex * __restrict__ y,
cuDoubleComplex * __restrict__ z )
{
const int i = blockIdx.x*blockDim.x + threadIdx.x;
if( i < n )
z[i] = x[i] - y[i];
}
//----------------------------------------------
// z = x + a*y
// d = z - x
__host__ void
fused_Zxpby_and_subtract(
const int n,
const cuDoubleComplex * x,
const cuDoubleComplex a,
const cuDoubleComplex * __restrict__ y,
cuDoubleComplex * __restrict__ z,
cuDoubleComplex * d,
const cudaStream_t stream )
{
const int Threads = 128; // Threads per block ## opt. for SM >= 3.0
const int Blocks = (n + Threads-1) / Threads; // We need enough blocks to span all the elements
fused_Zxpby_and_subtract_kernel <<< Blocks, Threads, 0, stream >>> ( n, x, a, y, z, d );
}
//- - - - - - - - - - - - - - - - - - - - - - - -
__global__ void
fused_Zxpby_and_subtract_kernel(
const int n,
const cuDoubleComplex * x,
const cuDoubleComplex a,
const cuDoubleComplex * __restrict__ y,
cuDoubleComplex * __restrict__ z,
cuDoubleComplex * d )
{
const int i = blockIdx.x*blockDim.x + threadIdx.x;
if( i < n )
{
const cuDoubleComplex xx = x[i]; // just in case that d == x
z[i] = cuCfma( a, y[i], xx ); // z[i] = xx + a*y[i];
d[i] = z[i] - xx;
}
}
//----------------------------------------------
// z = a*x + b*y
__host__ void
Zaxpby_async(
const int n,
const cuDoubleComplex & a,
const cuDoubleComplex * __restrict__ x,
const cuDoubleComplex & b,
const cuDoubleComplex * __restrict__ y,
cuDoubleComplex * __restrict__ z,
const cudaStream_t stream )
{
const int Threads = 128; // Threads per block ## opt. for SM >= 3.0
const int Blocks = (n + Threads-1) / Threads; // We need enough blocks to span all the elements
Zaxpby_async_kernel <<< Blocks, Threads, 0, stream >>> ( n, a, x, b, y, z );
}
//- - - - - - - - - - - - - - - - - - - - - - - -
__global__ void
Zaxpby_async_kernel(
const int n,
const cuDoubleComplex a,
const cuDoubleComplex * __restrict__ x,
const cuDoubleComplex b,
const cuDoubleComplex * __restrict__ y,
cuDoubleComplex * __restrict__ z)
{
const int i = blockIdx.x*blockDim.x + threadIdx.x;
if( i < n ) z[i] = a*x[i] + b*y[i];
}
//==============================================
// Kernels for diabatic-Ehrenfest
//----------------------------------------------
__host__ void
hadamard_minus(
const int n,
const int m,
const double * const __restrict__ x,
const double * const __restrict__ y,
double * const __restrict__ z,
const cudaStream_t stream )
{
const int N = n*m; // for the sake of hadamard prodruct, pretend matrices are big vectors
const int threads = 128; // Threads per block ## opt. for SM >= 3.0
const int blocks = (N + threads-1) / threads; // We need enough blocks to span all the elements
hadamard_minus_kernel <<< blocks, threads, 0, stream >>> (N, x, y, z);
}
//- - - - - - - - - - - - - - - - - - - - - - - -
__global__ void
hadamard_minus_kernel(
const int n,
const double * const __restrict__ x,
const double * const __restrict__ y,
double * const __restrict__ z )
{
const int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n)
{
// const double zz = z[i];
z[i] = x[i] * y[i] - z[i];
}
}
//- - - - - - - - - - - - - - - - - - - - - - - -
// ρ = Re{ ket(j,1)*bra(i,1) - ket(j,2)*bra(i,2) }
__global__ void
calculate_rho_kernel(
const int n,
const int ld,
const cuDoubleComplex * const __restrict__ bra,
const cuDoubleComplex * const __restrict__ ket,
double * const __restrict__ rho )
{
int i = (blockIdx.x * blockDim.x) + threadIdx.x;
int j = (blockIdx.y * blockDim.y);
__shared__ cuDoubleComplex ket_j[2];
if ((i < n) && (j < n))
{
// first thread loads ket elements into shared memory
// all threads within the block access the same values
if (threadIdx.x == 0)
{
ket_j[0] = ket[ IDX(j, 0, ld) ];
ket_j[1] = ket[ IDX(j, 1, ld) ];
}
__syncthreads(); // wait for ket to be loaded
rho[ IDX(i, j, ld) ] = real( ket_j[0] * bra[ IDX(i, 0, ld) ] )
- real( ket_j[1] * bra[ IDX(i, 1, ld) ] );
}
/* fortran code:
do j = 1, N
ket_j(:) = AO_ket(j,:)
do i = 1, N
rho_eh(i,j) = real( ket_j(1)*AO_bra(i,1) ) - real( ket_j(2)*AO_bra(i,2) )
end do
end do
*/
}
//----------------------------------------------
__host__ void
calculate_A(
const int n,
const int ld,
const cuDoubleComplex * const __restrict__ bra,
const cuDoubleComplex * const __restrict__ ket,
double * const __restrict__ A,
const cudaStream_t stream )
{
// 1) calculate ρ = Re{ ket(j,1)*bra(i,1) - ket(j,2)*bra(i,2) }
// result is stored in A
// each block works on the same column
dim3 threads(128, 1);
dim3 blocks( (n + threads.x - 1)/threads.x,
(ld + threads.y - 1)/threads.y );
calculate_rho_kernel <<< blocks, threads, 0, stream >>> (n, ld, bra, ket, A);
// 2) A = (ρ + ρ^T) / 2
double alpha = 0.5;
cublasSetStream( myHandle, stream );
cublasDgeam(myHandle, CUBLAS_OP_N, CUBLAS_OP_T, n, n, &alpha, A, ld, &alpha, A, ld, A, ld);
}
#endif