forked from napari/napari
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmgui_with_threadworker_.py
53 lines (44 loc) · 1.76 KB
/
mgui_with_threadworker_.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
"""
magicgui with threadworker
==========================
An example of calling a threaded function from a magicgui ``dock_widget``.
Note: this example requires python >= 3.9
"""
from magicgui import magic_factory, widgets
from skimage import data
from skimage.feature import blob_log
from typing_extensions import Annotated
import napari
from napari.qt.threading import FunctionWorker, thread_worker
from napari.types import ImageData, LayerDataTuple
@magic_factory(pbar={'visible': False, 'max': 0, 'label': 'working...'})
def make_widget(
pbar: widgets.ProgressBar,
image: ImageData,
min_sigma: Annotated[float, {"min": 0.5, "max": 15, "step": 0.5}] = 5,
max_sigma: Annotated[float, {"min": 1, "max": 200, "step": 0.5}] = 30,
num_sigma: Annotated[int, {"min": 1, "max": 20}] = 10,
threshold: Annotated[float, {"min": 0, "max": 1000, "step": 0.1}] = 6,
) -> FunctionWorker[LayerDataTuple]:
# @thread_worker creates a worker that runs a function in another thread
# we connect the "returned" signal to the ProgressBar.hide method
@thread_worker(connect={'returned': pbar.hide})
def detect_blobs() -> LayerDataTuple:
# this is the potentially long-running function
blobs = blob_log(image, min_sigma, max_sigma, num_sigma, threshold)
points = blobs[:, : image.ndim]
meta = dict(
size=blobs[:, -1],
edge_color="red",
edge_width=2,
face_color="transparent",
)
# return a "LayerDataTuple"
return (points, meta, 'points')
# show progress bar and return worker
pbar.show()
return detect_blobs()
viewer = napari.Viewer()
viewer.window.add_dock_widget(make_widget(), area="right")
viewer.add_image(data.hubble_deep_field().mean(-1))
napari.run()