-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_cross.py
216 lines (189 loc) · 9.07 KB
/
train_cross.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
import shutil
import operator
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
from tqdm import tqdm
from datetime import datetime
from transformers.optimization import get_linear_schedule_with_warmup
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from config import Config
from utils import Batcher, setup_seed, adapter_from_parallel
from log import Logger, highlight
from data import ChIDDataset
from model import Cross_Retriever
from transformers import BertTokenizer
time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
opt_level = 'O1'
def main():
config = Config().parser.parse_args()
setup_seed(config.seed)
if not os.path.exists(config.logdir):
os.mkdir(config.logdir)
else:
print(highlight(f"Removing {config.logdir}"))
shutil.rmtree(config.logdir)
assert not os.path.exists(config.logdir)
os.mkdir(config.logdir)
assert config.mode == 'train'
if config.debug:
config.num_workers = 0
logger = Logger(os.path.join(config.logdir, config.logfile)).get_logger()
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
batcher = Batcher(config=config, device=device)
retriever =Cross_Retriever(config=config, tokenizer=BertTokenizer.from_pretrained(config.model_type)).to(device)
train_data = ChIDDataset(config.train_path, config=config)
test_data = ChIDDataset(config.test_path, config=config)
valid_data = ChIDDataset(config.valid_path, config=config)
train_loader = DataLoader(train_data, config.batch_size, shuffle=True,
num_workers=config.num_workers, collate_fn=batcher.get_batch_cross)
test_loader = DataLoader(test_data, config.eval_batch_size, shuffle=False,
num_workers=config.num_workers, collate_fn=batcher.get_batch_cross)
valid_loader = DataLoader(valid_data, config.eval_batch_size, shuffle=False,
num_workers=config.num_workers, collate_fn=batcher.get_batch_cross)
eps = 1e-8
retr_optimizer = optim.AdamW(params=retriever.parameters(), lr=config.lr_retr, eps=eps)
retr_scheduler = get_linear_schedule_with_warmup(retr_optimizer, num_warmup_steps=config.warmup_steps_retr,
num_training_steps=len(train_loader) * config.max_epochs)
retr_criterion = nn.CrossEntropyLoss()
if torch.cuda.device_count() > 1:
retriever = nn.DataParallel(retriever, device_ids=list(range(torch.cuda.device_count())))
# -------------------- Training epochs ------------------- #
logger.info(20 * "=" + "Config" + 20 * "=")
for k, v in vars(config).items():
logger.info(f'{k}: {v}')
logger.info(
f'retriever params: {sum(param.numel() for param in retriever.parameters() if param.requires_grad)}')
sum_dir = os.path.join(config.logdir, config.summary)
writer = SummaryWriter(log_dir=sum_dir)
for epoch in range(config.max_epochs):
logger.info(f'Begin training epoch {epoch}:')
best_score = train(retriever=retriever,
train_loader=train_loader,
retr_criterion=retr_criterion,
retr_optimizer=retr_optimizer,
retr_scheduler=retr_scheduler,
batcher=batcher,
epoch=epoch,
config=config,
logger=logger,
writer=writer,
eval_loader=valid_loader,
device=device)
def train(retriever,
train_loader, # valid_loader, #train_loader,
retr_criterion,
retr_optimizer,
retr_scheduler,
batcher,
epoch,
config,
logger,
writer,
eval_loader,
device):
eval_every = len(train_loader) // config.eval_times_per_epoch + 1
logger.info('=' * 10 + f'Eval every {eval_every} steps!' + '=' * 10)
retr_loss_sum = 0.
retr_acc_sum = 0.
best_score = 0
for step_idx, raw_batch in enumerate(tqdm(train_loader, desc=f'Train: {epoch}')):
retriever.train()
labels, mask_locations, idiom_contents = raw_batch
labels = torch.tensor(labels, dtype=torch.long, device=device) # [b]
mask_locations = torch.tensor(mask_locations, dtype=torch.long, device=device) # [b]
idiom_contents = torch.tensor(idiom_contents, dtype=torch.long, device=device) # [b, 7, content_len]
idiom_logits = retriever(idiom_contents=idiom_contents, mask_locations=mask_locations) # [b, 7]
retr_acc = torch.mean((torch.argmax(idiom_logits, dim=-1) == labels).float())
retr_acc_sum += retr_acc.item()
idiom_logits = torch.nn.functional.log_softmax(idiom_logits / config.temperature, dim=-1) # [b, can_num(7)]
#print(idiom_logits)
retriever_loss = retr_criterion(idiom_logits, labels)
retr_optimizer.zero_grad()
retriever_loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(
[p for p in retriever.parameters() if p.requires_grad], config.grad_clip)
retr_loss_sum += retriever_loss.item()
if grad_norm >= config.grad_clip:
logger.info(
'WARNING: Exploding Gradients in retriever {:.2f} > {:.2f}'.format(grad_norm, config.grad_clip))
retr_optimizer.step()
retr_scheduler.step()
# trick
#if not (epoch > 1 and retr_optimizer.param_groups[0]['lr'] < config.lr_retr_min):
# retr_scheduler.step()
if step_idx > 0 and (step_idx + 1) % config.print_every == 0:
retr_lr = retr_optimizer.state_dict()['param_groups'][0]['lr']
logger.info(
'retr_loss: {:.4f}, retr_lr: {:.8e}, retr_acc: {:.3f} '.format(
retr_loss_sum / config.print_every,
retr_lr,
retr_acc_sum / config.print_every,
))
retr_loss_sum = 0.
retr_acc_sum = 0.
#if step_idx > 0 and (step_idx + 1) % eval_every == 0:
# with torch.no_grad():
# best_score = evaluate(data_loader=eval_loader,
# retriever=retriever,
# batcher=batcher,
# epoch=epoch,
# step_idx=step_idx,
# config=config,
# logger=logger,
# device=device,
# best_score=best_score,
# retr_optimizer=retr_optimizer)
# # new_best_scores.append(best_score)
with torch.no_grad():
best_score = evaluate(data_loader=eval_loader,
retriever=retriever,
batcher=batcher,
epoch=epoch,
step_idx="end_epoch",
config=config,
logger=logger,
device=device,
best_score=best_score,
retr_optimizer=retr_optimizer)
return best_score
def evaluate(data_loader,
retriever,
batcher,
epoch,
step_idx,
config,
logger,
device,
best_score,
retr_optimizer):
logger.info(f'Begin evaluating at epoch {epoch} and step {step_idx}:')
retr_acc_sum = 0.
retr_num = 0
for step_idx, raw_batch in enumerate(tqdm(data_loader, desc=f'Eval: {epoch}')):
retriever.eval()
labels, mask_locations, idiom_contents = raw_batch
labels = torch.tensor(labels, dtype=torch.long, device=device) # [b]
mask_locations = torch.tensor(mask_locations, dtype=torch.long, device=device) # [b]
idiom_contents = torch.tensor(idiom_contents, dtype=torch.long, device=device) # [b, 7, content_len]
idiom_logits = retriever(idiom_contents=idiom_contents, mask_locations=mask_locations) # [b, 7]
retr_acc = torch.mean((torch.argmax(idiom_logits, dim=-1) == labels).float())
retr_acc_sum += retr_acc.item()
retr_num += 1
retr_acc_final = retr_acc_sum / retr_num
if retr_acc_final > best_score:
best_score = retr_acc_final
logger.info(highlight(f'NEW best results of acc: {best_score}! Save model!!!'))
torch.save({'epoch': epoch,
'step_idx': step_idx,
'retriever': retriever.state_dict(),
'retr_optimizer': retr_optimizer.state_dict() if retr_optimizer is not None else None,
'best_acc_score': best_score},
os.path.join(config.logdir, f'checkpoint_acc_{epoch}_{step_idx}_best.pt'))
return best_score
if __name__ == '__main__':
main()