-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
181 lines (141 loc) · 5.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
import time
import torch, torchaudio, torchvision
from torch.utils.data import Dataset, DataLoader
from torch.utils.tensorboard import SummaryWriter
# 打印库的版本信息
print(f"\033[92mINFO\033[0m: PyTorch version: {torch.__version__}")
print(f"\033[92mINFO\033[0m: Torchaudio version: {torchaudio.__version__}")
print(f"\033[92mINFO\033[0m: Torchvision version: {torchvision.__version__}")
# 设备选择
device = torch.device(
"cuda"
if torch.cuda.is_available()
else "mps" if torch.backends.mps.is_available() else "cpu"
)
print(f"\033[92mINFO\033[0m: Using device: {device}")
# 超参数设置
batch_size = 4
epochs = 20
# 模型保存目录
os.makedirs("models/", exist_ok=True)
class PreprocessedDataset(Dataset):
def __init__(self, data_dir):
self.data_dir = data_dir
self.samples = [
os.path.join(data_dir, f) for f in os.listdir(data_dir) if f.endswith(".pt")
]
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
sample_path = self.samples[idx]
mfcc, image, label = torch.load(sample_path)
return mfcc.float(), image.float(), label
class WatermelonModel(torch.nn.Module):
def __init__(self):
super(WatermelonModel, self).__init__()
# LSTM for audio features
self.lstm = torch.nn.LSTM(
input_size=376, hidden_size=64, num_layers=2, batch_first=True
)
self.lstm_fc = torch.nn.Linear(
64, 128
) # Convert LSTM output to 128-dim for merging
# ResNet50 for image features
self.resnet = torchvision.models.resnet50(pretrained=True)
self.resnet.fc = torch.nn.Linear(
self.resnet.fc.in_features, 128
) # Convert ResNet output to 128-dim for merging
# Fully connected layers for final prediction
self.fc1 = torch.nn.Linear(256, 64)
self.fc2 = torch.nn.Linear(64, 1)
self.relu = torch.nn.ReLU()
def forward(self, mfcc, image):
# LSTM branch
lstm_output, _ = self.lstm(mfcc)
lstm_output = lstm_output[:, -1, :] # Use the output of the last time step
lstm_output = self.lstm_fc(lstm_output)
# ResNet branch
resnet_output = self.resnet(image)
# Concatenate LSTM and ResNet outputs
merged = torch.cat((lstm_output, resnet_output), dim=1)
# Fully connected layers
output = self.relu(self.fc1(merged))
output = self.fc2(output)
return output
def train_model():
# 数据集加载
data_dir = "processed/"
dataset = PreprocessedDataset(data_dir)
n_samples = len(dataset)
train_size = int(0.7 * n_samples)
val_size = int(0.2 * n_samples)
test_size = n_samples - train_size - val_size
train_dataset, val_dataset, test_dataset = torch.utils.data.random_split(
dataset, [train_size, val_size, test_size]
)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
model = WatermelonModel().to(device)
# 损失函数和优化器
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# TensorBoard
writer = SummaryWriter("runs/")
global_step = 0
print(f"\033[92mINFO\033[0m: Training model for {epochs} epochs")
print(f"\033[92mINFO\033[0m: Training samples: {len(train_dataset)}")
print(f"\033[92mINFO\033[0m: Validation samples: {len(val_dataset)}")
print(f"\033[92mINFO\033[0m: Test samples: {len(test_dataset)}")
print(f"\033[92mINFO\033[0m: Batch size: {batch_size}")
# 训练循环
for epoch in range(epochs):
print(f"\033[92mINFO\033[0m: Training epoch ({epoch+1}/{epochs})")
model.train()
running_loss = 0.0
try:
for mfcc, image, label in train_loader:
mfcc, image, label = mfcc.to(device), image.to(device), label.to(device)
optimizer.zero_grad()
output = model(mfcc, image)
label = label.view(-1, 1).float()
loss = criterion(output, label)
loss.backward()
optimizer.step()
running_loss += loss.item()
writer.add_scalar("Training Loss", loss.item(), global_step)
global_step += 1
except Exception as e:
print(f"\033[91mERR!\033[0m: {e}")
# 验证阶段
model.eval()
val_loss = 0.0
with torch.no_grad():
try:
for mfcc, image, label in val_loader:
mfcc, image, label = (
mfcc.to(device),
image.to(device),
label.to(device),
)
output = model(mfcc, image)
loss = criterion(output, label.view(-1, 1))
val_loss += loss.item()
except Exception as e:
print(f"\033[91mERR!\033[0m: {e}")
# 记录验证损失
writer.add_scalar("Validation Loss", val_loss / len(val_loader), epoch)
print(
f"Epoch [{epoch+1}/{epochs}], Training Loss: {running_loss/len(train_loader):.4f}, "
f"Validation Loss: {val_loss/len(val_loader):.4f}"
)
# 保存模型检查点
timestamp = time.strftime("%Y%m%d-%H%M%S")
model_path = f"models/model_{epoch+1}_{timestamp}.pt"
torch.save(model.state_dict(), model_path)
print(
f"\033[92mINFO\033[0m: Model checkpoint epoch [{epoch+1}/{epochs}] saved: {model_path}"
)
print(f"\033[92mINFO\033[0m: Training complete")
if __name__ == "__main__":
train_model()