-
Notifications
You must be signed in to change notification settings - Fork 2
/
calculate_force_energy_CPU.cpp
309 lines (259 loc) · 11 KB
/
calculate_force_energy_CPU.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/********************************************************************************
*
* Copyright (C) 2015 Culham Centre for Fusion Energy,
* United Kingdom Atomic Energy Authority, Oxfordshire OX14 3DB, UK
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
********************************************************************************
*
* Program: SPILADY - A Spin-Lattice Dynamics Simulation Program
* Version: 1.0
* Date: Aug 2015
* Author: Pui-Wai (Leo) MA
* Contact: [email protected]
* Address: Culham Centre for Fusion Energy, OX14 3DB, United Kingdom
*
********************************************************************************/
#ifdef CPU
#include "spilady.h"
void inner_loop(atom_struct *atom_ptr){
#if defined SDH || defined SDHL || defined SLDH || defined SLDHL || defined SLDNC
double si_sq = vec_sq(atom_ptr->s);
#endif
struct atom_struct *work_ptr;
struct cell_struct *ccell_ptr;
struct cell_struct *wcell_ptr;
ccell_ptr = first_cell_ptr + atom_ptr->new_cell_index;
for (int i = 0; i <= 13; ++i){
if (i == 13)
wcell_ptr = ccell_ptr;
else
wcell_ptr = first_cell_ptr + (ccell_ptr->neigh_cell[i]);
work_ptr = wcell_ptr->head_ptr;
while (work_ptr != NULL){
if (work_ptr == atom_ptr && i == 13) break;
vector rij = vec_sub(atom_ptr->r, work_ptr->r);
find_image(rij);
double rsq = vec_sq(rij);
#if defined MD || defined SLDH || defined SLDHL || defined SLDNC
double pair_enr = 0e0;
double dudr = 0e0;
#endif
#if defined SDH || defined SDHL || defined SLDH || defined SLDHL
double dudr_spin = 0e0;
#endif
#if defined SDH || defined SDHL || defined SLDH || defined SLDHL || defined SLDNC
double sj_sq = vec_sq(work_ptr->s);
#endif
if (rsq < rcut_max_sq && atom_ptr != work_ptr){
double rij0 = sqrt(rsq);
#ifdef localvol
if (rij0 < rcut_vol){
#pragma omp atomic
atom_ptr->sum_rij_m1 += 1e0/rij0;
#pragma omp atomic
atom_ptr->sum_rij_m2 += 1e0/rsq;
#pragma omp atomic
work_ptr->sum_rij_m1 += 1e0/rij0;
#pragma omp atomic
work_ptr->sum_rij_m2 += 1e0/rsq;
}
#endif
#if defined MD || defined SLDH || defined SLDHL || defined SLDNC
if (rij0 < rcut_pot){
double dsmallf_rij = dsmallf(rij0);
dudr = (dbigf(atom_ptr->rho) + dbigf(work_ptr->rho))*dsmallf_rij + dpair(rij0);
#if defined SLDHL
dudr += (dLandauA(atom_ptr->rho)*si_sq
+ dLandauB(atom_ptr->rho)*pow(si_sq,2)
+ dLandauC(atom_ptr->rho)*pow(si_sq,3)
+ dLandauD(atom_ptr->rho)*pow(si_sq,4))*dsmallf_rij;
dudr += (dLandauA(work_ptr->rho)*sj_sq
+ dLandauB(work_ptr->rho)*pow(sj_sq,2)
+ dLandauC(work_ptr->rho)*pow(sj_sq,3)
+ dLandauD(work_ptr->rho)*pow(sj_sq,4))*dsmallf_rij;
#endif
pair_enr = pairij(rij0);
#pragma omp atomic
atom_ptr->pe += 0.5e0*pair_enr;
#pragma omp atomic
work_ptr->pe += 0.5e0*pair_enr;
}
#endif
#if defined SDH || defined SDHL || defined SLDH || defined SLDHL
if (rij0 < rcut_mag){
double si_dot_sj = vec_dot(atom_ptr->s, work_ptr->s); //Si.Sj
double si_times_sj = sqrt(si_sq*sj_sq); //|Si|.|Sj|
#if defined SLDH || defined SLDHL
dudr_spin = -dJij(rij0)*(si_dot_sj - si_times_sj); // -dJdr_ij(Si dot Sj - |Si||Sj|)
#endif
double Jij_half = Jij(rij0)/2e0;
double J_times = Jij_half*si_times_sj;
double J_dot = -Jij_half*si_dot_sj;
#pragma omp atomic
atom_ptr->me0 += J_times;
#pragma omp atomic
atom_ptr->me += J_dot;
#pragma omp atomic
work_ptr->me0 += J_times;
#pragma omp atomic
work_ptr->me += J_dot;
}
#if defined SLDH || defined SLDHL
dudr += dudr_spin;
#endif
#endif
#if defined MD || defined SLDH || defined SLDHL || defined SLDNC
double force = -dudr/rij0;
vector fij = vec_times(force, rij);
#pragma omp atomic
atom_ptr->f.x += fij.x;
#pragma omp atomic
atom_ptr->f.y += fij.y;
#pragma omp atomic
atom_ptr->f.z += fij.z;
#pragma omp atomic
work_ptr->f.x -= fij.x;
#pragma omp atomic
work_ptr->f.y -= fij.y;
#pragma omp atomic
work_ptr->f.z -= fij.z;
#pragma omp atomic
atom_ptr->stress11 += fij.x*rij.x;
#pragma omp atomic
atom_ptr->stress22 += fij.y*rij.y;
#pragma omp atomic
atom_ptr->stress33 += fij.z*rij.z;
#pragma omp atomic
atom_ptr->stress12 += fij.x*rij.y;
#pragma omp atomic
atom_ptr->stress23 += fij.y*rij.z;
#pragma omp atomic
atom_ptr->stress31 += fij.z*rij.x;
#pragma omp atomic
work_ptr->stress11 += fij.x*rij.x;
#pragma omp atomic
work_ptr->stress22 += fij.y*rij.y;
#pragma omp atomic
work_ptr->stress33 += fij.z*rij.z;
#pragma omp atomic
work_ptr->stress12 += fij.x*rij.y;
#pragma omp atomic
work_ptr->stress23 += fij.y*rij.z;
#pragma omp atomic
work_ptr->stress31 += fij.z*rij.x;
atom_ptr->vir += -force*rsq;
#endif
}
work_ptr = work_ptr->next_atom_ptr;
}
}
#if defined MD || defined SLDH || defined SLDHL
atom_ptr->pe +=bigf(atom_ptr->rho);
#endif
#if defined SDH || defined SDHL || defined SLDH || defined SLDHL
#ifdef extfield
atom_ptr->me -= vec_dot(atom_ptr->s, atom_ptr->Hext);
#endif
#ifdef SLDHL
atom_ptr->me += LandauA(atom_ptr->rho)*si_sq
+ LandauB(atom_ptr->rho)*pow(si_sq,2)
+ LandauC(atom_ptr->rho)*pow(si_sq,3)
+ LandauD(atom_ptr->rho)*pow(si_sq,4);
#endif
#ifdef SDHL
atom_ptr->me += LandauA(1)*si_sq
+ LandauB(1)*pow(si_sq,2)
+ LandauC(1)*pow(si_sq,3)
+ LandauD(1)*pow(si_sq,4);
#endif
#endif
}
void calculate_force_energy_CPU(){
#pragma omp parallel for
for (int i = 0; i < natom; ++i){
struct atom_struct *atom_ptr;
atom_ptr = first_atom_ptr + i;
#if defined MD || defined SLDH || defined SLDHL || defined SLDNC
atom_ptr->f = vec_zero();
atom_ptr->pe = 0e0;
atom_ptr->vir = 0e0;
atom_ptr->stress11 = 0e0;
atom_ptr->stress22 = 0e0;
atom_ptr->stress33 = 0e0;
atom_ptr->stress12 = 0e0;
atom_ptr->stress23 = 0e0;
atom_ptr->stress31 = 0e0;
#endif
#if defined SDH || defined SDHL || defined SLDH || defined SLDHL
atom_ptr->me = 0e0;
atom_ptr->me0 = 0e0;
#endif
#ifdef localvol
atom_ptr->sum_rij_m1 = 0e0; //Sum rij^-1
atom_ptr->sum_rij_m2 = 0e0; //Sum rij^-2
#endif
}
for (int i = 0 ; i < ngroups ; ++i){
#pragma omp parallel for
for (int j = 0 ; j < *(allocate_threads_ptr+i); ++j){
struct atom_struct *atom_ptr;
atom_ptr = (*(allocate_cell_ptr_ptr + i*max_no_of_members + j))->head_ptr;
while(atom_ptr != NULL){
inner_loop(atom_ptr); // calculate force and energy; both lattice and spin
atom_ptr = atom_ptr->next_atom_ptr;
}
}
}
//#pragma omp parallel for
//for (int i = 0; i < natom; ++i) inner_loop((first_atom_ptr+i));
double sum_volume = 0e0;
#pragma omp parallel for reduction(+:sum_volume)
for (int i = 0; i < natom; ++i){
struct atom_struct *atom_ptr;
atom_ptr = first_atom_ptr + i;
#ifdef localvol
double local_radius = 0.5e0*atom_ptr->sum_rij_m1/atom_ptr->sum_rij_m2;
atom_ptr->local_volume = 4e0*Pi_num/3e0*pow(local_radius, 3e0); //it is only an estimation!!!
sum_volume += atom_ptr->local_volume;
#else
atom_ptr->local_volume = box_volume/natom;
#endif
}
#ifdef localvol
double volume_factor = box_volume/sum_volume;
#pragma omp parallel for
for ( int i = 0; i < natom; ++i) (first_atom_ptr+i)->local_volume *= volume_factor;
#endif
#if defined MD || defined SLDH || defined SLDHL || defined SLDNC
#pragma omp parallel for
for (int i = 0; i < natom; ++i){
struct atom_struct *atom_ptr;
atom_ptr = first_atom_ptr + i;
atom_ptr->stress11 = (pow(atom_ptr->p.x,2)/atmass + atom_ptr->stress11/2e0)/atom_ptr->local_volume;
atom_ptr->stress22 = (pow(atom_ptr->p.y,2)/atmass + atom_ptr->stress22/2e0)/atom_ptr->local_volume;
atom_ptr->stress33 = (pow(atom_ptr->p.z,2)/atmass + atom_ptr->stress33/2e0)/atom_ptr->local_volume;
atom_ptr->stress12 = ((atom_ptr->p.x*atom_ptr->p.y)/atmass + atom_ptr->stress12/2e0)/atom_ptr->local_volume;
atom_ptr->stress23 = ((atom_ptr->p.y*atom_ptr->p.z)/atmass + atom_ptr->stress23/2e0)/atom_ptr->local_volume;
atom_ptr->stress31 = ((atom_ptr->p.z*atom_ptr->p.x)/atmass + atom_ptr->stress31/2e0)/atom_ptr->local_volume;
}
virial = 0e0;
#pragma omp parallel for reduction(+:virial)
for (int i = 0; i < natom; ++i) virial += (first_atom_ptr+i)->vir;
#endif
}
void calculate_force_energy(){
calculate_force_energy_CPU();
}
#endif