forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbench_gpu_1bn.py
745 lines (570 loc) · 21.7 KB
/
bench_gpu_1bn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
#! /usr/bin/env python2
from __future__ import print_function
import numpy as np
import time
import os
import sys
import faiss
import re
from multiprocessing.dummy import Pool as ThreadPool
from datasets import ivecs_read
####################################################################
# Parse command line
####################################################################
def usage():
print("""
Usage: bench_gpu_1bn.py dataset indextype [options]
dataset: set of vectors to operate on.
Supported: SIFT1M, SIFT2M, ..., SIFT1000M or Deep1B
indextype: any index type supported by index_factory that runs on GPU.
General options
-ngpu ngpu nb of GPUs to use (default = all)
-tempmem N use N bytes of temporary GPU memory
-nocache do not read or write intermediate files
-float16 use 16-bit floats on the GPU side
Add options
-abs N split adds in blocks of no more than N vectors
-max_add N copy sharded dataset to CPU each max_add additions
(to avoid memory overflows with geometric reallocations)
-altadd Alternative add function, where the index is not stored
on GPU during add. Slightly faster for big datasets on
slow GPUs
Search options
-R R: nb of replicas of the same dataset (the dataset
will be copied across ngpu/R, default R=1)
-noptables do not use precomputed tables in IVFPQ.
-qbs N split queries in blocks of no more than N vectors
-nnn N search N neighbors for each query
-nprobe 4,16,64 try this number of probes
-knngraph instead of the standard setup for the dataset,
compute a k-nn graph with nnn neighbors per element
-oI xx%d.npy output the search result indices to this numpy file,
%d will be replaced with the nprobe
-oD xx%d.npy output the search result distances to this file
""", file=sys.stderr)
sys.exit(1)
# default values
dbname = None
index_key = None
ngpu = faiss.get_num_gpus()
replicas = 1 # nb of replicas of sharded dataset
add_batch_size = 32768
query_batch_size = 16384
nprobes = [1 << l for l in range(9)]
knngraph = False
use_precomputed_tables = True
tempmem = -1 # if -1, use system default
max_add = -1
use_float16 = False
use_cache = True
nnn = 10
altadd = False
I_fname = None
D_fname = None
args = sys.argv[1:]
while args:
a = args.pop(0)
if a == '-h': usage()
elif a == '-ngpu': ngpu = int(args.pop(0))
elif a == '-R': replicas = int(args.pop(0))
elif a == '-noptables': use_precomputed_tables = False
elif a == '-abs': add_batch_size = int(args.pop(0))
elif a == '-qbs': query_batch_size = int(args.pop(0))
elif a == '-nnn': nnn = int(args.pop(0))
elif a == '-tempmem': tempmem = int(args.pop(0))
elif a == '-nocache': use_cache = False
elif a == '-knngraph': knngraph = True
elif a == '-altadd': altadd = True
elif a == '-float16': use_float16 = True
elif a == '-nprobe': nprobes = [int(x) for x in args.pop(0).split(',')]
elif a == '-max_add': max_add = int(args.pop(0))
elif not dbname: dbname = a
elif not index_key: index_key = a
else:
print("argument %s unknown" % a, file=sys.stderr)
sys.exit(1)
cacheroot = '/tmp/bench_gpu_1bn'
if not os.path.isdir(cacheroot):
print("%s does not exist, creating it" % cacheroot)
os.mkdir(cacheroot)
#################################################################
# Small Utility Functions
#################################################################
# we mem-map the biggest files to avoid having them in memory all at
# once
def mmap_fvecs(fname):
x = np.memmap(fname, dtype='int32', mode='r')
d = x[0]
return x.view('float32').reshape(-1, d + 1)[:, 1:]
def mmap_bvecs(fname):
x = np.memmap(fname, dtype='uint8', mode='r')
d = x[:4].view('int32')[0]
return x.reshape(-1, d + 4)[:, 4:]
def rate_limited_imap(f, l):
"""A threaded imap that does not produce elements faster than they
are consumed"""
pool = ThreadPool(1)
res = None
for i in l:
res_next = pool.apply_async(f, (i, ))
if res:
yield res.get()
res = res_next
yield res.get()
class IdentPreproc:
"""a pre-processor is either a faiss.VectorTransform or an IndentPreproc"""
def __init__(self, d):
self.d_in = self.d_out = d
def apply_py(self, x):
return x
def sanitize(x):
""" convert array to a c-contiguous float array """
return np.ascontiguousarray(x.astype('float32'))
def dataset_iterator(x, preproc, bs):
""" iterate over the lines of x in blocks of size bs"""
nb = x.shape[0]
block_ranges = [(i0, min(nb, i0 + bs))
for i0 in range(0, nb, bs)]
def prepare_block((i0, i1)):
xb = sanitize(x[i0:i1])
return i0, preproc.apply_py(xb)
return rate_limited_imap(prepare_block, block_ranges)
def eval_intersection_measure(gt_I, I):
""" measure intersection measure (used for knngraph)"""
inter = 0
rank = I.shape[1]
assert gt_I.shape[1] >= rank
for q in range(nq_gt):
inter += faiss.ranklist_intersection_size(
rank, faiss.swig_ptr(gt_I[q, :]),
rank, faiss.swig_ptr(I[q, :].astype('int64')))
return inter / float(rank * nq_gt)
#################################################################
# Prepare dataset
#################################################################
print("Preparing dataset", dbname)
if dbname.startswith('SIFT'):
# SIFT1M to SIFT1000M
dbsize = int(dbname[4:-1])
xb = mmap_bvecs('bigann/bigann_base.bvecs')
xq = mmap_bvecs('bigann/bigann_query.bvecs')
xt = mmap_bvecs('bigann/bigann_learn.bvecs')
# trim xb to correct size
xb = xb[:dbsize * 1000 * 1000]
gt_I = ivecs_read('bigann/gnd/idx_%dM.ivecs' % dbsize)
elif dbname == 'Deep1B':
xb = mmap_fvecs('deep1b/base.fvecs')
xq = mmap_fvecs('deep1b/deep1B_queries.fvecs')
xt = mmap_fvecs('deep1b/learn.fvecs')
# deep1B's train is is outrageously big
xt = xt[:10 * 1000 * 1000]
gt_I = ivecs_read('deep1b/deep1B_groundtruth.ivecs')
else:
print('unknown dataset', dbname, file=sys.stderr)
sys.exit(1)
if knngraph:
# convert to knn-graph dataset
xq = xb
xt = xb
# we compute the ground-truth on this number of queries for validation
nq_gt = 10000
gt_sl = 100
# ground truth will be computed below
gt_I = None
print("sizes: B %s Q %s T %s gt %s" % (
xb.shape, xq.shape, xt.shape,
gt_I.shape if gt_I is not None else None))
#################################################################
# Parse index_key and set cache files
#
# The index_key is a valid factory key that would work, but we
# decompose the training to do it faster
#################################################################
pat = re.compile('(OPQ[0-9]+(_[0-9]+)?,|PCAR[0-9]+,)?' +
'(IVF[0-9]+),' +
'(PQ[0-9]+|Flat)')
matchobject = pat.match(index_key)
assert matchobject, 'could not parse ' + index_key
mog = matchobject.groups()
preproc_str = mog[0]
ivf_str = mog[2]
pqflat_str = mog[3]
ncent = int(ivf_str[3:])
prefix = ''
if knngraph:
gt_cachefile = '%s/BK_gt_%s.npy' % (cacheroot, dbname)
prefix = 'BK_'
# files must be kept distinct because the training set is not the
# same for the knngraph
if preproc_str:
preproc_cachefile = '%s/%spreproc_%s_%s.vectrans' % (
cacheroot, prefix, dbname, preproc_str[:-1])
else:
preproc_cachefile = None
preproc_str = ''
cent_cachefile = '%s/%scent_%s_%s%s.npy' % (
cacheroot, prefix, dbname, preproc_str, ivf_str)
index_cachefile = '%s/%s%s_%s%s,%s.index' % (
cacheroot, prefix, dbname, preproc_str, ivf_str, pqflat_str)
if not use_cache:
preproc_cachefile = None
cent_cachefile = None
index_cachefile = None
print("cachefiles:")
print(preproc_cachefile)
print(cent_cachefile)
print(index_cachefile)
#################################################################
# Wake up GPUs
#################################################################
print("preparing resources for %d GPUs" % ngpu)
gpu_resources = []
for i in range(ngpu):
res = faiss.StandardGpuResources()
if tempmem >= 0:
res.setTempMemory(tempmem)
gpu_resources.append(res)
def make_vres_vdev(i0=0, i1=-1):
" return vectors of device ids and resources useful for gpu_multiple"
vres = faiss.GpuResourcesVector()
vdev = faiss.IntVector()
if i1 == -1:
i1 = ngpu
for i in range(i0, i1):
vdev.push_back(i)
vres.push_back(gpu_resources[i])
return vres, vdev
#################################################################
# Prepare ground truth (for the knngraph)
#################################################################
def compute_GT():
print("compute GT")
t0 = time.time()
gt_I = np.zeros((nq_gt, gt_sl), dtype='int64')
gt_D = np.zeros((nq_gt, gt_sl), dtype='float32')
heaps = faiss.float_maxheap_array_t()
heaps.k = gt_sl
heaps.nh = nq_gt
heaps.val = faiss.swig_ptr(gt_D)
heaps.ids = faiss.swig_ptr(gt_I)
heaps.heapify()
bs = 10 ** 5
n, d = xb.shape
xqs = sanitize(xq[:nq_gt])
db_gt = faiss.IndexFlatL2(d)
vres, vdev = make_vres_vdev()
db_gt_gpu = faiss.index_cpu_to_gpu_multiple(
vres, vdev, db_gt)
# compute ground-truth by blocks of bs, and add to heaps
for i0, xsl in dataset_iterator(xb, IdentPreproc(d), bs):
db_gt_gpu.add(xsl)
D, I = db_gt_gpu.search(xqs, gt_sl)
I += i0
heaps.addn_with_ids(
gt_sl, faiss.swig_ptr(D), faiss.swig_ptr(I), gt_sl)
db_gt_gpu.reset()
print("\r %d/%d, %.3f s" % (i0, n, time.time() - t0), end=' ')
print()
heaps.reorder()
print("GT time: %.3f s" % (time.time() - t0))
return gt_I
if knngraph:
if gt_cachefile and os.path.exists(gt_cachefile):
print("load GT", gt_cachefile)
gt_I = np.load(gt_cachefile)
else:
gt_I = compute_GT()
if gt_cachefile:
print("store GT", gt_cachefile)
np.save(gt_cachefile, gt_I)
#################################################################
# Prepare the vector transformation object (pure CPU)
#################################################################
def train_preprocessor():
print("train preproc", preproc_str)
d = xt.shape[1]
t0 = time.time()
if preproc_str.startswith('OPQ'):
fi = preproc_str[3:-1].split('_')
m = int(fi[0])
dout = int(fi[1]) if len(fi) == 2 else d
preproc = faiss.OPQMatrix(d, m, dout)
elif preproc_str.startswith('PCAR'):
dout = int(preproc_str[4:-1])
preproc = faiss.PCAMatrix(d, dout, 0, True)
else:
assert False
preproc.train(sanitize(xt[:1000000]))
print("preproc train done in %.3f s" % (time.time() - t0))
return preproc
def get_preprocessor():
if preproc_str:
if not preproc_cachefile or not os.path.exists(preproc_cachefile):
preproc = train_preprocessor()
if preproc_cachefile:
print("store", preproc_cachefile)
faiss.write_VectorTransform(preproc, preproc_cachefile)
else:
print("load", preproc_cachefile)
preproc = faiss.read_VectorTransform(preproc_cachefile)
else:
d = xb.shape[1]
preproc = IdentPreproc(d)
return preproc
#################################################################
# Prepare the coarse quantizer
#################################################################
def train_coarse_quantizer(x, k, preproc):
d = preproc.d_out
clus = faiss.Clustering(d, k)
clus.verbose = True
# clus.niter = 2
clus.max_points_per_centroid = 10000000
print("apply preproc on shape", x.shape, 'k=', k)
t0 = time.time()
x = preproc.apply_py(sanitize(x))
print(" preproc %.3f s output shape %s" % (
time.time() - t0, x.shape))
vres, vdev = make_vres_vdev()
index = faiss.index_cpu_to_gpu_multiple(
vres, vdev, faiss.IndexFlatL2(d))
clus.train(x, index)
centroids = faiss.vector_float_to_array(clus.centroids)
return centroids.reshape(k, d)
def prepare_coarse_quantizer(preproc):
if cent_cachefile and os.path.exists(cent_cachefile):
print("load centroids", cent_cachefile)
centroids = np.load(cent_cachefile)
else:
nt = max(1000000, 256 * ncent)
print("train coarse quantizer...")
t0 = time.time()
centroids = train_coarse_quantizer(xt[:nt], ncent, preproc)
print("Coarse train time: %.3f s" % (time.time() - t0))
if cent_cachefile:
print("store centroids", cent_cachefile)
np.save(cent_cachefile, centroids)
coarse_quantizer = faiss.IndexFlatL2(preproc.d_out)
coarse_quantizer.add(centroids)
return coarse_quantizer
#################################################################
# Make index and add elements to it
#################################################################
def prepare_trained_index(preproc):
coarse_quantizer = prepare_coarse_quantizer(preproc)
d = preproc.d_out
if pqflat_str == 'Flat':
print("making an IVFFlat index")
idx_model = faiss.IndexIVFFlat(coarse_quantizer, d, ncent,
faiss.METRIC_L2)
else:
m = int(pqflat_str[2:])
assert m < 56 or use_float16, "PQ%d will work only with -float16" % m
print("making an IVFPQ index, m = ", m)
idx_model = faiss.IndexIVFPQ(coarse_quantizer, d, ncent, m, 8)
coarse_quantizer.this.disown()
idx_model.own_fields = True
# finish training on CPU
t0 = time.time()
print("Training vector codes")
x = preproc.apply_py(sanitize(xt[:1000000]))
idx_model.train(x)
print(" done %.3f s" % (time.time() - t0))
return idx_model
def compute_populated_index(preproc):
"""Add elements to a sharded index. Return the index and if available
a sharded gpu_index that contains the same data. """
indexall = prepare_trained_index(preproc)
co = faiss.GpuMultipleClonerOptions()
co.useFloat16 = use_float16
co.useFloat16CoarseQuantizer = False
co.usePrecomputed = use_precomputed_tables
co.indicesOptions = faiss.INDICES_CPU
co.verbose = True
co.reserveVecs = max_add if max_add > 0 else xb.shape[0]
co.shard = True
assert co.shard_type in (0, 1, 2)
vres, vdev = make_vres_vdev()
gpu_index = faiss.index_cpu_to_gpu_multiple(
vres, vdev, indexall, co)
print("add...")
t0 = time.time()
nb = xb.shape[0]
for i0, xs in dataset_iterator(xb, preproc, add_batch_size):
i1 = i0 + xs.shape[0]
gpu_index.add_with_ids(xs, np.arange(i0, i1))
if max_add > 0 and gpu_index.ntotal > max_add:
print("Flush indexes to CPU")
for i in range(ngpu):
index_src_gpu = faiss.downcast_index(gpu_index.at(i))
index_src = faiss.index_gpu_to_cpu(index_src_gpu)
print(" index %d size %d" % (i, index_src.ntotal))
index_src.copy_subset_to(indexall, 0, 0, nb)
index_src_gpu.reset()
index_src_gpu.reserveMemory(max_add)
gpu_index.sync_with_shard_indexes()
print('\r%d/%d (%.3f s) ' % (
i0, nb, time.time() - t0), end=' ')
sys.stdout.flush()
print("Add time: %.3f s" % (time.time() - t0))
print("Aggregate indexes to CPU")
t0 = time.time()
if hasattr(gpu_index, 'at'):
# it is a sharded index
for i in range(ngpu):
index_src = faiss.index_gpu_to_cpu(gpu_index.at(i))
print(" index %d size %d" % (i, index_src.ntotal))
index_src.copy_subset_to(indexall, 0, 0, nb)
else:
# simple index
index_src = faiss.index_gpu_to_cpu(gpu_index)
index_src.copy_subset_to(indexall, 0, 0, nb)
print(" done in %.3f s" % (time.time() - t0))
if max_add > 0:
# it does not contain all the vectors
gpu_index = None
return gpu_index, indexall
def compute_populated_index_2(preproc):
indexall = prepare_trained_index(preproc)
# set up a 3-stage pipeline that does:
# - stage 1: load + preproc
# - stage 2: assign on GPU
# - stage 3: add to index
stage1 = dataset_iterator(xb, preproc, add_batch_size)
vres, vdev = make_vres_vdev()
coarse_quantizer_gpu = faiss.index_cpu_to_gpu_multiple(
vres, vdev, indexall.quantizer)
def quantize((i0, xs)):
_, assign = coarse_quantizer_gpu.search(xs, 1)
return i0, xs, assign.ravel()
stage2 = rate_limited_imap(quantize, stage1)
print("add...")
t0 = time.time()
nb = xb.shape[0]
for i0, xs, assign in stage2:
i1 = i0 + xs.shape[0]
if indexall.__class__ == faiss.IndexIVFPQ:
indexall.add_core_o(i1 - i0, faiss.swig_ptr(xs),
None, None, faiss.swig_ptr(assign))
elif indexall.__class__ == faiss.IndexIVFFlat:
indexall.add_core(i1 - i0, faiss.swig_ptr(xs), None,
faiss.swig_ptr(assign))
else:
assert False
print('\r%d/%d (%.3f s) ' % (
i0, nb, time.time() - t0), end=' ')
sys.stdout.flush()
print("Add time: %.3f s" % (time.time() - t0))
return None, indexall
def get_populated_index(preproc):
if not index_cachefile or not os.path.exists(index_cachefile):
if not altadd:
gpu_index, indexall = compute_populated_index(preproc)
else:
gpu_index, indexall = compute_populated_index_2(preproc)
if index_cachefile:
print("store", index_cachefile)
faiss.write_index(indexall, index_cachefile)
else:
print("load", index_cachefile)
indexall = faiss.read_index(index_cachefile)
gpu_index = None
co = faiss.GpuMultipleClonerOptions()
co.useFloat16 = use_float16
co.useFloat16CoarseQuantizer = False
co.usePrecomputed = use_precomputed_tables
co.indicesOptions = 0
co.verbose = True
co.shard = True # the replicas will be made "manually"
t0 = time.time()
print("CPU index contains %d vectors, move to GPU" % indexall.ntotal)
if replicas == 1:
if not gpu_index:
print("copying loaded index to GPUs")
vres, vdev = make_vres_vdev()
index = faiss.index_cpu_to_gpu_multiple(
vres, vdev, indexall, co)
else:
index = gpu_index
else:
del gpu_index # We override the GPU index
print("Copy CPU index to %d sharded GPU indexes" % replicas)
index = faiss.IndexReplicas()
for i in range(replicas):
gpu0 = ngpu * i / replicas
gpu1 = ngpu * (i + 1) / replicas
vres, vdev = make_vres_vdev(gpu0, gpu1)
print(" dispatch to GPUs %d:%d" % (gpu0, gpu1))
index1 = faiss.index_cpu_to_gpu_multiple(
vres, vdev, indexall, co)
index1.this.disown()
index.addIndex(index1)
index.own_fields = True
del indexall
print("move to GPU done in %.3f s" % (time.time() - t0))
return index
#################################################################
# Perform search
#################################################################
def eval_dataset(index, preproc):
ps = faiss.GpuParameterSpace()
ps.initialize(index)
nq_gt = gt_I.shape[0]
print("search...")
sl = query_batch_size
nq = xq.shape[0]
for nprobe in nprobes:
ps.set_index_parameter(index, 'nprobe', nprobe)
t0 = time.time()
if sl == 0:
D, I = index.search(preproc.apply_py(sanitize(xq)), nnn)
else:
I = np.empty((nq, nnn), dtype='int32')
D = np.empty((nq, nnn), dtype='float32')
inter_res = ''
for i0, xs in dataset_iterator(xq, preproc, sl):
print('\r%d/%d (%.3f s%s) ' % (
i0, nq, time.time() - t0, inter_res), end=' ')
sys.stdout.flush()
i1 = i0 + xs.shape[0]
Di, Ii = index.search(xs, nnn)
I[i0:i1] = Ii
D[i0:i1] = Di
if knngraph and not inter_res and i1 >= nq_gt:
ires = eval_intersection_measure(
gt_I[:, :nnn], I[:nq_gt])
inter_res = ', %.4f' % ires
t1 = time.time()
if knngraph:
ires = eval_intersection_measure(gt_I[:, :nnn], I[:nq_gt])
print(" probe=%-3d: %.3f s rank-%d intersection results: %.4f" % (
nprobe, t1 - t0, nnn, ires))
else:
print(" probe=%-3d: %.3f s" % (nprobe, t1 - t0), end=' ')
gtc = gt_I[:, :1]
nq = xq.shape[0]
for rank in 1, 10, 100:
if rank > nnn: continue
nok = (I[:, :rank] == gtc).sum()
print("1-R@%d: %.4f" % (rank, nok / float(nq)), end=' ')
print()
if I_fname:
I_fname_i = I_fname % I
print("storing", I_fname_i)
np.save(I, I_fname_i)
if D_fname:
D_fname_i = I_fname % I
print("storing", D_fname_i)
np.save(D, D_fname_i)
#################################################################
# Driver
#################################################################
preproc = get_preprocessor()
index = get_populated_index(preproc)
eval_dataset(index, preproc)
# make sure index is deleted before the resources
del index