forked from dpressel/rude-carnie
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect.py
345 lines (288 loc) · 14.8 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import numpy as np
import tensorflow as tf
import cv2
FACE_PAD = 50
class ObjectDetector(object):
def __init__(self):
pass
def run(self, image_file):
pass
# OpenCV's cascade object detector
class ObjectDetectorCascadeOpenCV(ObjectDetector):
def __init__(self, model_name, basename='frontal-face', tgtdir='.', min_height_dec=20, min_width_dec=20,
min_height_thresh=50, min_width_thresh=50):
self.min_height_dec = min_height_dec
self.min_width_dec = min_width_dec
self.min_height_thresh = min_height_thresh
self.min_width_thresh = min_width_thresh
self.tgtdir = tgtdir
self.basename = basename
self.face_cascade = cv2.CascadeClassifier(model_name)
def run(self, image_file):
print(image_file)
img = cv2.imread(image_file)
min_h = int(max(img.shape[0] / self.min_height_dec, self.min_height_thresh))
min_w = int(max(img.shape[1] / self.min_width_dec, self.min_width_thresh))
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = self.face_cascade.detectMultiScale(gray, 1.3, minNeighbors=5, minSize=(min_h, min_w))
images = []
for i, (x, y, w, h) in enumerate(faces):
images.append(self.sub_image('%s/%s-%d.jpg' % (self.tgtdir, self.basename, i + 1), img, x, y, w, h))
print('%d faces detected' % len(images))
for (x, y, w, h) in faces:
self.draw_rect(img, x, y, w, h)
# Fix in case nothing found in the image
outfile = '%s/%s.jpg' % (self.tgtdir, self.basename)
cv2.imwrite(outfile, img)
return images, outfile
def sub_image(self, name, img, x, y, w, h):
upper_cut = [min(img.shape[0], y + h + FACE_PAD), min(img.shape[1], x + w + FACE_PAD)]
lower_cut = [max(y - FACE_PAD, 0), max(x - FACE_PAD, 0)]
roi_color = img[lower_cut[0]:upper_cut[0], lower_cut[1]:upper_cut[1]]
cv2.imwrite(name, roi_color)
return name
def draw_rect(self, img, x, y, w, h):
upper_cut = [min(img.shape[0], y + h + FACE_PAD), min(img.shape[1], x + w + FACE_PAD)]
lower_cut = [max(y - FACE_PAD, 0), max(x - FACE_PAD, 0)]
cv2.rectangle(img, (lower_cut[1], lower_cut[0]), (upper_cut[1], upper_cut[0]), (255, 0, 0), 2)
class YOLOBase(ObjectDetector):
def __init__(self):
pass
def _conv_layer(self, idx, inputs, filters, size, stride):
channels = inputs.get_shape()[3]
weight = tf.Variable(tf.truncated_normal([size, size, int(channels), filters], stddev=0.1))
biases = tf.Variable(tf.constant(0.1, shape=[filters]))
pad_size = size // 2
pad_mat = np.array([[0, 0], [pad_size, pad_size], [pad_size, pad_size], [0, 0]])
inputs_pad = tf.pad(inputs, pad_mat)
conv = tf.nn.conv2d(inputs_pad, weight, strides=[1, stride, stride, 1], padding='VALID',
name=str(idx) + '_conv')
conv_biased = tf.add(conv, biases, name=str(idx) + '_conv_biased')
return tf.maximum(self.alpha * conv_biased, conv_biased, name=str(idx) + '_leaky_relu')
def _pooling_layer(self, idx, inputs, size, stride):
return tf.nn.max_pool(inputs, ksize=[1, size, size, 1], strides=[1, stride, stride, 1], padding='SAME',
name=str(idx) + '_pool')
def _fc_layer(self, idx, inputs, hiddens, flat=False, linear=False):
input_shape = inputs.get_shape().as_list()
if flat:
dim = input_shape[1] * input_shape[2] * input_shape[3]
inputs_transposed = tf.transpose(inputs, (0, 3, 1, 2))
inputs_processed = tf.reshape(inputs_transposed, [-1, dim])
else:
dim = input_shape[1]
inputs_processed = inputs
weight = tf.Variable(tf.truncated_normal([dim, hiddens], stddev=0.1))
biases = tf.Variable(tf.constant(0.1, shape=[hiddens]))
if linear: return tf.add(tf.matmul(inputs_processed, weight), biases, name=str(idx) + '_fc')
ip = tf.add(tf.matmul(inputs_processed, weight), biases)
return tf.maximum(self.alpha * ip, ip, name=str(idx) + '_fc')
def _init_base_model(self):
self.x = tf.placeholder('float32', [None, 448, 448, 3])
conv_1 = self._conv_layer(1, self.x, 16, 3, 1)
pool_2 = self._pooling_layer(2, conv_1, 2, 2)
conv_3 = self._conv_layer(3, pool_2, 32, 3, 1)
pool_4 = self._pooling_layer(4, conv_3, 2, 2)
conv_5 = self._conv_layer(5, pool_4, 64, 3, 1)
pool_6 = self._pooling_layer(6, conv_5, 2, 2)
conv_7 = self._conv_layer(7, pool_6, 128, 3, 1)
pool_8 = self._pooling_layer(8, conv_7, 2, 2)
conv_9 = self._conv_layer(9, pool_8, 256, 3, 1)
pool_10 = self._pooling_layer(10, conv_9, 2, 2)
conv_11 = self._conv_layer(11, pool_10, 512, 3, 1)
pool_12 = self._pooling_layer(12, conv_11, 2, 2)
conv_13 = self._conv_layer(13, pool_12, 1024, 3, 1)
conv_14 = self._conv_layer(14, conv_13, 1024, 3, 1)
conv_15 = self._conv_layer(15, conv_14, 1024, 3, 1)
fc_16 = self._fc_layer(16, conv_15, 256, flat=True, linear=False)
return self._fc_layer(17, fc_16, 4096, flat=False, linear=False)
def _iou(self, box1, box2):
tb = min(box1[0] + 0.5 * box1[2], box2[0] + 0.5 * box2[2]) - max(box1[0] - 0.5 * box1[2],
box2[0] - 0.5 * box2[2])
lr = min(box1[1] + 0.5 * box1[3], box2[1] + 0.5 * box2[3]) - max(box1[1] - 0.5 * box1[3],
box2[1] - 0.5 * box2[3])
if tb < 0 or lr < 0:
intersection = 0
else:
intersection = tb * lr
return intersection / (box1[2] * box1[3] + box2[2] * box2[3] - intersection)
def sub_image(self, name, img, x, y, w, h):
half_w = w // 2
half_h = h // 2
upper_cut = [y + half_h, x + half_w]
lower_cut = [y - half_h, x - half_w];
roi_color = img[lower_cut[0]:upper_cut[0], lower_cut[1]:upper_cut[1]]
cv2.imwrite(name, roi_color)
return name
def draw_rect(self, img, x, y, w, h):
half_w = w // 2
half_h = h // 2
upper_cut = [y + half_h, x + half_w]
lower_cut = [y - half_h, x - half_w];
cv2.rectangle(img, (lower_cut[1], lower_cut[0]), (upper_cut[1], upper_cut[0]), (0, 255, 0), 2)
def run(self, filename):
img = cv2.imread(filename)
self.h_img, self.w_img, _ = img.shape
img_resized = cv2.resize(img, (448, 448))
img_RGB = cv2.cvtColor(img_resized, cv2.COLOR_BGR2RGB)
img_resized_np = np.asarray(img_RGB)
inputs = np.zeros((1, 448, 448, 3), dtype='float32')
inputs[0] = (img_resized_np / 255.0) * 2.0 - 1.0
in_dict = {self.x: inputs}
net_output = self.sess.run(self.fc_19, feed_dict=in_dict)
faces = self.interpret_output(net_output[0])
images = []
for i, (x, y, w, h, p) in enumerate(faces):
images.append(self.sub_image('%s/%s-%d.jpg' % (self.tgtdir, self.basename, i + 1), img, x, y, w, h))
print('%d faces detected' % len(images))
for (x, y, w, h, p) in faces:
print('Face found [%d, %d, %d, %d] (%.2f)' % (x, y, w, h, p));
self.draw_rect(img, x, y, w, h)
# Fix in case nothing found in the image
outfile = '%s/%s.jpg' % (self.tgtdir, self.basename)
cv2.imwrite(outfile, img)
return images, outfile
def __init__(self, model_name, basename, tgtdir, alpha, threshold, iou_threshold):
self.alpha = alpha
self.threshold = threshold
self.iou_threshold = iou_threshold
self.basename = basename
self.tgtdir = tgtdir
self.load_model(model_name)
class PersonDetectorYOLOTiny(YOLOBase):
def __init__(self, model_name, basename='frontal-face', tgtdir='.', alpha=0.1, threshold=0.2, iou_threshold=0.5):
self.alpha = alpha
self.threshold = threshold
self.iou_threshold = iou_threshold
self.basename = basename
self.tgtdir = tgtdir
self.load_model(model_name)
def load_model(self, model_name):
g = tf.Graph()
with g.as_default():
fc_17 = self._init_base_model()
# skip dropout_18
self.fc_19 = self._fc_layer(19, fc_17, 1470, flat=False, linear=True)
self.sess = tf.Session(graph=g)
self.sess.run(tf.global_variables_initializer())
self.saver = tf.train.Saver()
self.saver.restore(self.sess, model_name)
def interpret_output(self, output):
probs = np.zeros((7, 7, 2, 20))
class_probs = np.reshape(output[0:980], (7, 7, 20))
scales = np.reshape(output[980:1078], (7, 7, 2))
boxes = np.reshape(output[1078:], (7, 7, 2, 4))
offset = np.transpose(np.reshape(np.array([np.arange(7)] * 14), (2, 7, 7)), (1, 2, 0))
boxes[:, :, :, 0] += offset
boxes[:, :, :, 1] += np.transpose(offset, (1, 0, 2))
boxes[:, :, :, 0:2] = boxes[:, :, :, 0:2] / 7.0
boxes[:, :, :, 2] = np.multiply(boxes[:, :, :, 2], boxes[:, :, :, 2])
boxes[:, :, :, 3] = np.multiply(boxes[:, :, :, 3], boxes[:, :, :, 3])
boxes[:, :, :, 0] *= self.w_img
boxes[:, :, :, 1] *= self.h_img
boxes[:, :, :, 2] *= self.w_img
boxes[:, :, :, 3] *= self.h_img
for i in range(2):
for j in range(20):
probs[:, :, i, j] = np.multiply(class_probs[:, :, j], scales[:, :, i])
filter_mat_probs = np.array(probs >= self.threshold, dtype='bool')
filter_mat_boxes = np.nonzero(filter_mat_probs)
boxes_filtered = boxes[filter_mat_boxes[0], filter_mat_boxes[1], filter_mat_boxes[2]]
probs_filtered = probs[filter_mat_probs]
classes_num_filtered = np.argmax(filter_mat_probs, axis=3)[
filter_mat_boxes[0], filter_mat_boxes[1], filter_mat_boxes[2]]
argsort = np.array(np.argsort(probs_filtered))[::-1]
boxes_filtered = boxes_filtered[argsort]
probs_filtered = probs_filtered[argsort]
classes_num_filtered = classes_num_filtered[argsort]
for i in range(len(boxes_filtered)):
if probs_filtered[i] == 0:
continue
for j in range(i + 1, len(boxes_filtered)):
if self._iou(boxes_filtered[i], boxes_filtered[j]) > self.iou_threshold:
probs_filtered[j] = 0.0
filter_iou = np.array(probs_filtered > 0.0, dtype='bool')
boxes_filtered = boxes_filtered[filter_iou]
probs_filtered = probs_filtered[filter_iou]
classes_num_filtered = classes_num_filtered[filter_iou]
result = []
for i in range(len(boxes_filtered)):
if classes_num_filtered[i] == 14:
result.append([int(boxes_filtered[i][0]),
int(boxes_filtered[i][1]),
int(boxes_filtered[i][2]),
int(boxes_filtered[i][3]),
probs_filtered[i]])
return result
# This model doesnt seem to work particularly well on data I have tried
class FaceDetectorYOLO(YOLOBase):
def __init__(self, model_name, basename='frontal-face', tgtdir='.', alpha=0.1, threshold=0.2, iou_threshold=0.5):
self.alpha = alpha
self.threshold = threshold
self.iou_threshold = iou_threshold
self.basename = basename
self.tgtdir = tgtdir
self.load_model(model_name)
def load_model(self, model_name):
g = tf.Graph()
with g.as_default():
fc_17 = self._init_base_model()
# skip dropout_18
self.fc_19 = self._fc_layer(19, fc_17, 1331, flat=False, linear=True)
self.sess = tf.Session(graph=g)
self.sess.run(tf.global_variables_initializer())
self.saver = tf.train.Saver()
self.saver.restore(self.sess, model_name)
def interpret_output(self, output):
prob_range = [0, 11 * 11 * 1]
scales_range = [prob_range[1], prob_range[1] + 11 * 11 * 2]
boxes_range = [scales_range[1], scales_range[1] + 11 * 11 * 2 * 4]
probs = np.zeros((11, 11, 2, 1))
class_probs = np.reshape(output[0:prob_range[1]], (11, 11, 1))
scales = np.reshape(output[scales_range[0]:scales_range[1]], (11, 11, 2))
boxes = np.reshape(output[boxes_range[0]:], (11, 11, 2, 4))
offset = np.transpose(np.reshape(np.array([np.arange(11)] * (2 * 11)), (2, 11, 11)), (1, 2, 0))
boxes[:, :, :, 0] += offset
boxes[:, :, :, 1] += np.transpose(offset, (1, 0, 2))
boxes[:, :, :, 0:2] = boxes[:, :, :, 0:2] / float(11)
boxes[:, :, :, 2] = np.multiply(boxes[:, :, :, 2], boxes[:, :, :, 2])
boxes[:, :, :, 3] = np.multiply(boxes[:, :, :, 3], boxes[:, :, :, 3])
boxes[:, :, :, 0] *= self.w_img
boxes[:, :, :, 1] *= self.h_img
boxes[:, :, :, 2] *= self.w_img
boxes[:, :, :, 3] *= self.h_img
for i in range(2):
probs[:, :, i, 0] = np.multiply(class_probs[:, :, 0], scales[:, :, i])
filter_mat_probs = np.array(probs >= self.threshold, dtype='bool')
filter_mat_boxes = np.nonzero(filter_mat_probs)
boxes_filtered = boxes[filter_mat_boxes[0], filter_mat_boxes[1], filter_mat_boxes[2]]
probs_filtered = probs[filter_mat_probs]
classes_num_filtered = np.argmax(filter_mat_probs, axis=3)[
filter_mat_boxes[0], filter_mat_boxes[1], filter_mat_boxes[2]]
argsort = np.array(np.argsort(probs_filtered))[::-1]
boxes_filtered = boxes_filtered[argsort]
probs_filtered = probs_filtered[argsort]
classes_num_filtered = classes_num_filtered[argsort]
for i in range(len(boxes_filtered)):
if probs_filtered[i] == 0: continue
for j in range(i + 1, len(boxes_filtered)):
if self._iou(boxes_filtered[i], boxes_filtered[j]) > self.iou_threshold:
probs_filtered[j] = 0.0
filter_iou = np.array(probs_filtered > 0.0, dtype='bool')
boxes_filtered = boxes_filtered[filter_iou]
probs_filtered = probs_filtered[filter_iou]
classes_num_filtered = classes_num_filtered[filter_iou]
result = []
for i in range(len(boxes_filtered)):
result.append([int(boxes_filtered[i][0]),
int(boxes_filtered[i][1]),
int(boxes_filtered[i][2]),
int(boxes_filtered[i][3]),
probs_filtered[i]])
return result
def face_detection_model(model_type, model_path):
model_type_lc = model_type.lower()
if model_type_lc == 'yolo_tiny':
return PersonDetectorYOLOTiny(model_path)
elif model_type_lc == 'yolo_face':
return FaceDetectorYOLO(model_path)
return ObjectDetectorCascadeOpenCV(model_path)