-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
306 lines (266 loc) · 11.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import os
import chainlit as cl
from chainlit.input_widget import Select
from llama_index.core import (
Settings,
StorageContext,
VectorStoreIndex,
SummaryIndex,
SimpleDirectoryReader,
load_index_from_storage,
get_response_synthesizer,
)
from llama_index.core.query_engine import RouterQueryEngine
from llama_index.core.selectors import LLMSingleSelector
from llama_index.core.retrievers import VectorIndexRetriever, SummaryIndexRetriever
from llama_index.core.response_synthesizers import ResponseMode
from llama_index.llms.azure_inference import AzureAICompletionsModel
from llama_index.embeddings.azure_inference import AzureAIEmbeddingsModel
from llama_index.core.query_engine.retriever_query_engine import RetrieverQueryEngine
from llama_index.core.callbacks import CallbackManager
from llama_index.core.tools import QueryEngineTool
try:
# rebuild storage context
storage_context = StorageContext.from_defaults(persist_dir="./storage")
# load index
vector_index = load_index_from_storage(storage_context, index_id="vector_index")
summary_index = load_index_from_storage(storage_context, index_id="summary_index")
except (FileNotFoundError, KeyError, Exception):
vector_index = None
summary_index = None
pass
# Small Language Models in GitHub Model Catalog
github_inference_url = "https://models.inference.ai.azure.com"
# If using GitHub Personal access token add your token in the "" below
github_token = os.getenv("GITHUB_TOKEN", "")
github_models_names = {
"Meta-Llama-3-8B-Instruct": "Meta-Llama-3-8B-Instruct",
"Meta-Llama-3.1-8B-Instruct": "Meta-Llama-3.1-8B-Instruct",
"Phi-3-medium-128k-instruct": "Phi-3-medium-128k-instruct",
"Phi-3-medium-4k-instruct": "Phi-3-medium-4k-instruct",
"Phi-3-mini-128k-instruct": "Phi-3-mini-128k-instruct",
"Phi-3-mini-4k-instruct": "Phi-3-mini-4k-instruct",
"Phi-3-small-128k-instruct": "Phi-3-small-128k-instruct",
"Phi-3-small-8k-instruct": "Phi-3-small-8k-instruct",
"Phi-3.5-mini-instruct": "Phi-3.5-mini-instruct",
}
@cl.on_chat_start
async def start():
global vector_index
global summary_index
cl_settings = await cl.ChatSettings(
[
Select(
id="llm",
label="LLM model",
description="The LLM used for generation",
items={
"Meta Llama 3 8B Instruct": "Meta-Llama-3-8B-Instruct",
"Meta Llama 3.1 8B Instruct": "Meta-Llama-3.1-8B-Instruct",
"Phi 3 Medium 128k Instruct": "Phi-3-medium-128k-instruct",
"Phi 3 Medium 4k Instruct": "Phi-3-medium-4k-instruct",
"Phi 3 Mini 128k Instruct": "Phi-3-mini-128k-instruct",
"Phi 3 Mini 4k Instruct": "Phi-3-mini-4k-instruct",
"Phi 3 Small 128k Instruct": "Phi-3-small-128k-instruct",
"Phi 3 Small 8k Instruct": "Phi-3-small-8k-instruct",
"Phi-3.5-mini-instruct": "Phi-3.5-mini-instruct",
},
initial_value="Cohere Command R",
),
Select(
id="router_llm",
label="Router LLM",
description="The LLM model used for routing the requests.",
items={
"Meta Llama 3 8B Instruct": "Meta-Llama-3-8B-Instruct",
"Meta Llama 3.1 8B Instruct": "Meta-Llama-3.1-8B-Instruct",
"Phi 3 Medium 128k Instruct": "Phi-3-medium-128k-instruct",
"Phi 3 Medium 4k Instruct": "Phi-3-medium-4k-instruct",
"Phi 3 Mini 128k Instruct": "Phi-3-mini-128k-instruct",
"Phi 3 Mini 4k Instruct": "Phi-3-mini-4k-instruct",
"Phi 3 Small 128k Instruct": "Phi-3-small-128k-instruct",
"Phi 3 Small 8k Instruct": "Phi-3-small-8k-instruct",
"Phi-3.5-mini-instruct": "Phi-3.5-mini-instruct",
},
initial_value="Cohere Command R+",
),
]
).send()
# Read environment variables from GitHub Codespaces
# if os.getenv("CODESPACES", "") == "true":
# Settings.llm = AzureAICompletionsModel(
# endpoint=github_inference_url,
# credential=github_token,
# temperature=0.1,
# max_tokens=1024,
# streaming=True,
# model_name=github_models_names.get("Cohere-command-r", "Cohere-command-r"),
# )
# # Temporary fix for the model name issue: https://github.com/run-llama/llama_index/issues/15169#issuecomment-2299571873
# Settings.llm._model_name = github_models_names.get(
# "Cohere-command-r-plus", "Cohere-command-r-plus"
# )
# Settings.embed_model = AzureAIEmbeddingsModel(
# endpoint=github_inference_url,
# credential=github_token,
# model_name=github_models_names.get(
# "Cohere-embed-v3-multilingual", "Cohere-embed-v3-multilingual"
# ),
# )
# Settings.callback_manager = CallbackManager([cl.LlamaIndexCallbackHandler()])
# Settings.context_window = 4096
# else:
Settings.llm = AzureAICompletionsModel(
endpoint=github_inference_url,
credential=github_token,
temperature=0.1,
max_tokens=1024,
streaming=True,
model_name=github_models_names.get("Cohere-command-r", "Cohere-command-r"),
)
# Temporary fix for the model name issue: https://github.com/run-llama/llama_index/issues/15169#issuecomment-2299571873
Settings.llm._model_name = github_models_names.get(
"Cohere-command-r-plus", "Cohere-command-r-plus"
)
Settings.embed_model = AzureAIEmbeddingsModel(
endpoint=github_inference_url,
credential=github_token,
model_name=github_models_names.get(
"Cohere-embed-v3-multilingual", "Cohere-embed-v3-multilingual"
),
)
Settings.callback_manager = CallbackManager([cl.LlamaIndexCallbackHandler()])
Settings.context_window = 4096
if not vector_index:
documents = SimpleDirectoryReader("data/paul_graham/").load_data(
show_progress=True
)
vector_index = VectorStoreIndex.from_documents(documents)
vector_index.set_index_id("vector_index")
vector_index.storage_context.persist()
summary_index = SummaryIndex.from_documents(documents)
summary_index.set_index_id("summary_index")
summary_index.storage_context.persist()
query_engine = build_query_engine_with_router()
cl.user_session.set("query_engine", query_engine)
cl.user_session.set("settings", cl_settings)
await cl.Message(
author="Assistant",
content="Hello! I'm an AI assistant. I will try to answer questions about the life of Paul Graham. For specific questions I will use a vector index, but for more comprehensive questions I will use a summary index. I use a LLM to analyze you queston and decide which strategy I should use based on the complexity of the query. Use the settings section to change the model I use to decide.",
).send()
def build_simple_query_engine():
global vector_index
retriever = VectorIndexRetriever(
index=vector_index,
similarity_top_k=2,
)
response_synthesizer = get_response_synthesizer(
response_mode=ResponseMode.COMPACT, streaming=True
)
query_engine = RetrieverQueryEngine(
retriever=retriever,
response_synthesizer=response_synthesizer,
)
return query_engine
def build_summary_query_engine():
global summary_index
retriever = SummaryIndexRetriever(
index=summary_index,
)
response_synthesizer = get_response_synthesizer(
response_mode=ResponseMode.TREE_SUMMARIZE, streaming=True
)
query_engine = RetrieverQueryEngine(
retriever=retriever,
response_synthesizer=response_synthesizer,
)
return query_engine
def build_query_engine_with_router(router_llm=None):
summary_tool = QueryEngineTool.from_defaults(
query_engine=build_summary_query_engine(),
description=(
"Useful for summarization questions related to Paul Graham eassy on"
" What I Worked On."
),
)
vector_tool = QueryEngineTool.from_defaults(
query_engine=build_simple_query_engine(),
description=(
"Useful for retrieving specific context from Paul Graham essay on What"
" I Worked On."
),
)
query_engine = RouterQueryEngine(
selector=LLMSingleSelector.from_defaults(llm=router_llm),
query_engine_tools=[
summary_tool,
vector_tool,
],
)
return query_engine
@cl.on_message
async def main(message: cl.Message):
query_engine = cl.user_session.get("query_engine") # type: RetrieverQueryEngine
msg = cl.Message(content="", author="Assistant")
res = await cl.make_async(query_engine.query)(message.content)
for token in res.response_gen:
await msg.stream_token(token)
await msg.send()
@cl.on_settings_update
async def setup_agent(settings):
cl.user_session.set("settings", settings)
if settings.get("router_llm", None):
router_llm_environ = settings["router_llm"]
# if os.getenv("CODESPACES", "") == "true":
# router_llm = AzureAICompletionsModel(
# endpoint=github_inference_url,
# credential=github_token,
# temperature=0.1,
# max_tokens=1024,
# streaming=True,
# model_name=github_models_names.get(router_llm_environ, ""),
# )
# router_llm._model_name = github_models_names.get(router_llm_environ, "")
# else:
router_llm = AzureAICompletionsModel(
endpoint=github_inference_url,
credential=github_token,
temperature=0.1,
max_tokens=1024,
streaming=True,
model_name=github_models_names.get(router_llm_environ, ""),
)
router_llm._model_name = github_models_names.get(router_llm_environ, "")
query_engine = build_query_engine_with_router(router_llm)
cl.user_session.set("query_engine", query_engine)
await cl.Message(
author="Assistant",
content=f"We are now using {router_llm_environ} for routing queries.",
).send()
if settings.get("llm", None):
llm_environ = settings["llm"]
# if os.getenv("CODESPACES", "") == "true":
# llm = AzureAICompletionsModel(
# endpoint=github_inference_url,
# credential=github_token,
# temperature=0.1,
# max_tokens=1024,
# streaming=True,
# model_name=github_models_names.get(llm_environ, ""),
# )
# llm._model_name = github_models_names.get(llm_environ, "")
# else:
llm = AzureAICompletionsModel(
endpoint=github_inference_url,
credential=github_token,
temperature=0.1,
max_tokens=1024,
streaming=True,
model_name=github_models_names.get(llm_environ, ""),
)
llm._model_name = github_models_names.get(llm_environ, "")
Settings.llm = llm
await cl.Message(
author="Assistant",
content=f"We are now using {llm_environ} for answering queries.",
).send()