forked from hyhmia/BlindMI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
BlindMIUtil.py
187 lines (155 loc) · 6.76 KB
/
BlindMIUtil.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import numpy as np
import tensorflow as tf
from functools import partial
import cv2 as cv
import random
def gaussian_noise(img_set, mean=0, var=0.001):
ret = np.empty(img_set.shape)
for m, image in enumerate(img_set):
image = np.array(image/255, dtype=float)
noise = np.random.normal(mean, var ** 0.5, image.shape)
out = image + noise
if out.min() < 0:
low_clip = -1.
else:
low_clip = 0.
out = np.clip(out, low_clip, 1.0)
out = np.uint8(out*255)
ret[m, :] = out
return ret
def sobel(img_set):
ret = np.empty(img_set.shape)
for i, img in enumerate(img_set):
grad_x = cv.Sobel(np.float32(img), cv.CV_32F, 1, 0)
grad_y = cv.Sobel(np.float32(img), cv.CV_32F, 0, 1)
gradx = cv.convertScaleAbs(grad_x)
grady = cv.convertScaleAbs(grad_y)
gradxy = cv.addWeighted(gradx, 0.5, grady, 0.5, 0)
ret[i, :] = gradxy
return ret
def sp_noise(img_set, prob=0.001):
ret = np.empty(img_set.shape)
for m, image in enumerate(img_set):
out = np.zeros(image.shape, np.uint8)
thres = 1 - prob
for i in range(image.shape[0]):
for j in range(image.shape[1]):
rdn = random.random()
if rdn < prob:
out[i][j] = 0
elif rdn > thres:
out[i][j] = 255
else:
out[i][j] = image[i][j]
ret[m,:] = out
return ret
def scharr(img_set):
ret = np.empty(img_set.shape)
for i, img in enumerate(img_set):
grad_x = cv.Scharr(np.float32(img), cv.CV_32F, 1, 0)
grad_y = cv.Scharr(np.float32(img), cv.CV_32F, 0, 1)
gradx = cv.convertScaleAbs(grad_x)
grady = cv.convertScaleAbs(grad_y)
gradxy = cv.addWeighted(gradx, 0.5, grady, 0.5, 0)
ret[i, :] = gradxy
return ret
def laplace(img_set):
ret = np.empty(img_set.shape)
for i, img in enumerate(img_set):
gray_lap = cv.Laplacian(np.float32(img), cv.CV_32F, ksize=3)
dst = cv.convertScaleAbs(gray_lap)
ret[i, :] = dst
return ret
def compute_pairwise_distances(x, y):
"""Computes the squared pairwise Euclidean distances between x and y.
Args:
x: a tensor of shape [num_x_samples, num_features]
y: a tensor of shape [num_y_samples, num_features]
Returns:
a distance matrix of dimensions [num_x_samples, num_y_samples].
Raises:
ValueError: if the inputs do no matched the specified dimensions.
"""
if not len(x.get_shape()) == len(y.get_shape()) == 2:
raise ValueError('Both inputs should be matrices.')
if x.get_shape().as_list()[1] != y.get_shape().as_list()[1]:
raise ValueError('The number of features should be the same.')
norm = lambda x: tf.reduce_sum(tf.square(x), 1)
return tf.transpose(norm(tf.expand_dims(x, 2) - tf.transpose(y)))
def gaussian_kernel_matrix(x, y, sigmas):
r"""Computes a Guassian Radial Basis Kernel between the samples of x and y.
We create a sum of multiple gaussian kernels each having a width sigma_i.
Args:
x: a tensor of shape [num_samples, num_features]
y: a tensor of shape [num_samples, num_features]
sigmas: a tensor of floats which denote the widths of each of the
gaussians in the kernel.
Returns:
A tensor of shape [num_samples{x}, num_samples{y}] with the RBF kernel.
"""
beta = 1. / (2. * (tf.expand_dims(sigmas, 1)))
dist = compute_pairwise_distances(x, y)
s = tf.matmul(beta, tf.reshape(dist, (1, -1)))
return tf.reshape(tf.reduce_sum(tf.exp(-s), 0), tf.shape(dist))
def maximum_mean_discrepancy(x, y, kernel=gaussian_kernel_matrix):
'''
Computes the Maximum Mean Discrepancy (MMD) of two samples: x and y.
Maximum Mean Discrepancy (MMD) is a distance-measure between the samples of
the distributions of x and y. Here we use the kernel two sample estimate
using the empirical mean of the two distributions.
MMD^2(P, Q) = || \E{\phi(x)} - \E{\phi(y)} ||^2
= \E{ K(x, x) } + \E{ K(y, y) } - 2 \E{ K(x, y) },
where K = <\phi(x), \phi(y)>,
is the desired kernel function, in this case a radial basis kernel.
Args:
x: a tensor of shape [num_samples, num_features]
y: a tensor of shape [num_samples, num_features]
kernel: a function which computes the kernel in MMD. Defaults to the
GaussianKernelMatrix.
Returns:
a scalar denoting the squared maximum mean discrepancy loss.
'''
with tf.name_scope('MaximumMeanDiscrepancy'):
# \E{ K(x, x) } + \E{ K(y, y) } - 2 \E{ K(x, y) }
cost = tf.reduce_mean(kernel(x, x))
cost += tf.reduce_mean(kernel(y, y))
cost -= 2 * tf.reduce_mean(kernel(x, y))
# We do not allow the loss to become negative.
cost = tf.where(cost > 0, cost, 0, name='value')
return cost
def mmd_loss(source_samples, target_samples, weight, scope=None):
"""Adds a similarity loss term, the MMD between two representations.
This Maximum Mean Discrepancy (MMD) loss is calculated with a number of
different Gaussian kernels.
Args:
source_samples: a tensor of shape [num_samples, num_features].
target_samples: a tensor of shape [num_samples, num_features].
weight: the weight of the MMD loss.
scope: optional name scope for summary tags.
Returns:
a scalar tensor representing the MMD loss value.
"""
sigmas = [
1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 5, 10, 15, 20, 25, 30, 35, 100,
1e3, 1e4, 1e5, 1e6
]
gaussian_kernel = partial(
gaussian_kernel_matrix, sigmas=tf.constant(sigmas))
loss_value = maximum_mean_discrepancy(
source_samples, target_samples, kernel=gaussian_kernel)
loss_value = tf.maximum(1e-4, loss_value) * weight
return loss_value
def probe_model(model, x_, y_true, m_true):
c_ = model.predict(x_)
shuffled_index = tf.random.shuffle(tf.range(c_.shape[0]))
return x_[shuffled_index], c_[shuffled_index], y_true[shuffled_index], m_true[shuffled_index]
def evaluate_attack(m_true, m_pred):
accuracy = tf.keras.metrics.Accuracy()
precision = tf.keras.metrics.Precision()
recall = tf.keras.metrics.Recall()
accuracy.update_state(m_true, m_pred)
precision.update_state(m_true, m_pred)
recall.update_state(m_true, m_pred)
F1_Score = 2 * (precision.result() * recall.result()) / (precision.result() + recall.result())
print('accuracy:%.4f precision:%.4f recall:%.4f F1_Score:%.4f'
% (accuracy.result(), precision.result(), recall.result(), F1_Score))