-
Notifications
You must be signed in to change notification settings - Fork 0
/
linux.cc
464 lines (424 loc) · 17.7 KB
/
linux.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
/*
* Copyright (C) 2013-2014 Cloudius Systems, Ltd.
*
* This work is open source software, licensed under the terms of the
* BSD license as described in the LICENSE file in the top-level directory.
*/
// linux syscalls
#include <osv/debug.hh>
#include <boost/format.hpp>
#include <osv/sched.hh>
#include <osv/mutex.h>
#include <osv/waitqueue.hh>
#include <osv/stubbing.hh>
#include <memory>
#include <syscall.h>
#include <stdarg.h>
#include <errno.h>
#include <signal.h>
#include <time.h>
#include <sys/epoll.h>
#include <sys/eventfd.h>
#include <sys/socket.h>
#include <sys/utsname.h>
#include <sys/mman.h>
#include <stdlib.h>
#include <signal.h>
#include <sys/select.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/file.h>
#include <sys/unistd.h>
#include <sys/random.h>
#include <unordered_map>
#include <musl/src/internal/ksigaction.h>
extern "C" long gettid()
{
return sched::thread::current()->id();
}
// We don't expect applications to use the Linux futex() system call (it is
// normally only used to implement higher-level synchronization mechanisms),
// but unfortunately gcc's C++ runtime uses a subset of futex in the
// __cxa__guard_* functions, which safeguard the concurrent initialization
// of function-scope static objects. We only implement here this subset.
// The __cxa_guard_* functions only call futex in the rare case of contention,
// in fact so rarely that OSv existed for a year before anyone noticed futex
// was missing. So the performance of this implementation is not critical.
static std::unordered_map<void*, waitqueue> queues;
static mutex queues_mutex;
enum {
FUTEX_WAIT = 0,
FUTEX_WAKE = 1,
FUTEX_PRIVATE_FLAG = 128,
FUTEX_CLOCK_REALTIME = 256,
FUTEX_CMD_MASK = ~(FUTEX_PRIVATE_FLAG|FUTEX_CLOCK_REALTIME),
};
int futex(int *uaddr, int op, int val, const struct timespec *timeout,
int *uaddr2, int val3)
{
switch (op & FUTEX_CMD_MASK) {
case FUTEX_WAIT:
WITH_LOCK(queues_mutex) {
if (*uaddr == val) {
waitqueue &q = queues[uaddr];
if (timeout) {
sched::timer tmr(*sched::thread::current());
tmr.set(std::chrono::seconds(timeout->tv_sec) +
std::chrono::nanoseconds(timeout->tv_nsec));
sched::thread::wait_for(queues_mutex, tmr, q);
// FIXME: testing if tmr was expired isn't quite right -
// we could have had both a wakeup and timer expiration
// racing. It would be more correct to check if we were
// waken by a FUTEX_WAKE. But how?
if (tmr.expired()) {
errno = ETIMEDOUT;
return -1;
}
} else {
q.wait(queues_mutex);
}
return 0;
} else {
errno = EWOULDBLOCK;
return -1;
}
}
case FUTEX_WAKE:
if(val < 0) {
errno = EINVAL;
return -1;
}
WITH_LOCK(queues_mutex) {
auto i = queues.find(uaddr);
if (i != queues.end()) {
int waken = 0;
while( (val > waken) && !(i->second.empty()) ) {
i->second.wake_one(queues_mutex);
waken++;
}
if(i->second.empty()) {
queues.erase(i);
}
return waken;
}
}
return 0;
default:
abort("Unimplemented futex() operation %d\n", op);
}
}
// We're not supposed to export the get_mempolicy() function, as this
// function is not part of glibc (which OSv emulates), but part of a
// separate library libnuma, which the user can simply load. libnuma's
// implementation of get_mempolicy() calls syscall(__NR_get_mempolicy,...),
// so this is what we need to expose, below.
#define MPOL_DEFAULT 0
#define MPOL_F_NODE (1<<0)
#define MPOL_F_ADDR (1<<1)
#define MPOL_F_MEMS_ALLOWED (1<<2)
static long get_mempolicy(int *policy, unsigned long *nmask,
unsigned long maxnode, void *addr, int flags)
{
// As OSv has no support for NUMA nodes, we do here the minimum possible,
// which is basically to return the same policy (MPOL_DEFAULT) and list
// of nodes (just node 0) no matter if the caller asked for the default
// policy, the allowed policy, or the policy for a specific address.
if ((flags & MPOL_F_NODE)) {
*policy = 0; // in this case, store a node id, not a policy
return 0;
}
if (policy) {
*policy = MPOL_DEFAULT;
}
if (nmask) {
if (maxnode < 1) {
errno = EINVAL;
return -1;
}
nmask[0] |= 1;
}
return 0;
}
static long set_mempolicy(int policy, unsigned long *nmask,
unsigned long maxnode)
{
// OSv has very minimal support for NUMA - merely exposes
// all cpus as a single node0 and cannot really apply any meaningful policy
// Therefore we implement this as noop, ignore all arguments and return success
return 0;
}
// As explained in the sched_getaffinity(2) manual page, the interface of the
// sched_getaffinity() function is slightly different than that of the actual
// system call we need to implement here.
#define __NR_sched_getaffinity_syscall __NR_sched_getaffinity
static int sched_getaffinity_syscall(
pid_t pid, unsigned len, unsigned long *mask)
{
int ret = sched_getaffinity(
pid, len, reinterpret_cast<cpu_set_t *>(mask));
if (ret == 0) {
// The Linux system call doesn't zero the entire len bytes of the
// given mask - it only sets up to the configured maximum number of
// CPUs (e.g., 64) and returns the amount of bytes it set at mask.
// We don't have this limitation (our sched_getaffinity() does zero
// the whole len), but some user code (e.g., libnuma's
// set_numa_max_cpu()) expect a reasonably low number to be
// returned, even when len is unrealistically high, so let's
// return a lower length too.
ret = std::min(len, sched::max_cpus / 8);
}
return ret;
}
#define __NR_sched_setaffinity_syscall __NR_sched_setaffinity
static int sched_setaffinity_syscall(
pid_t pid, unsigned len, unsigned long *mask)
{
return sched_setaffinity(
pid, len, reinterpret_cast<cpu_set_t *>(mask));
}
// Only void* return value of mmap is type casted, as syscall returns long.
long long_mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset) {
return (long) mmap(addr, length, prot, flags, fd, offset);
}
#define __NR_long_mmap __NR_mmap
#define SYSCALL0(fn) case (__NR_##fn): return fn()
#define SYSCALL1(fn, __t1) \
case (__NR_##fn): do { \
va_list args; \
__t1 arg1; \
va_start(args, number); \
arg1 = va_arg(args, __t1); \
va_end(args); \
return fn(arg1); \
} while (0)
#define SYSCALL2(fn, __t1, __t2) \
case (__NR_##fn): do { \
va_list args; \
__t1 arg1; \
__t2 arg2; \
va_start(args, number); \
arg1 = va_arg(args, __t1); \
arg2 = va_arg(args, __t2); \
va_end(args); \
return fn(arg1, arg2); \
} while (0)
#define SYSCALL3(fn, __t1, __t2, __t3) \
case (__NR_##fn): do { \
va_list args; \
__t1 arg1; \
__t2 arg2; \
__t3 arg3; \
va_start(args, number); \
arg1 = va_arg(args, __t1); \
arg2 = va_arg(args, __t2); \
arg3 = va_arg(args, __t3); \
va_end(args); \
return fn(arg1, arg2, arg3); \
} while (0)
#define SYSCALL4(fn, __t1, __t2, __t3, __t4) \
case (__NR_##fn): do { \
va_list args; \
__t1 arg1; \
__t2 arg2; \
__t3 arg3; \
__t4 arg4; \
va_start(args, number); \
arg1 = va_arg(args, __t1); \
arg2 = va_arg(args, __t2); \
arg3 = va_arg(args, __t3); \
arg4 = va_arg(args, __t4); \
va_end(args); \
return fn(arg1, arg2, arg3, arg4); \
} while (0)
#define SYSCALL5(fn, __t1, __t2, __t3, __t4, __t5) \
case (__NR_##fn): do { \
va_list args; \
__t1 arg1; \
__t2 arg2; \
__t3 arg3; \
__t4 arg4; \
__t5 arg5; \
va_start(args, number); \
arg1 = va_arg(args, __t1); \
arg2 = va_arg(args, __t2); \
arg3 = va_arg(args, __t3); \
arg4 = va_arg(args, __t4); \
arg5 = va_arg(args, __t5); \
va_end(args); \
return fn(arg1, arg2, arg3, arg4, arg5);\
} while (0)
#define SYSCALL6(fn, __t1, __t2, __t3, __t4, __t5, __t6) \
case (__NR_##fn): do { \
va_list args; \
__t1 arg1; \
__t2 arg2; \
__t3 arg3; \
__t4 arg4; \
__t5 arg5; \
__t6 arg6; \
va_start(args, number); \
arg1 = va_arg(args, __t1); \
arg2 = va_arg(args, __t2); \
arg3 = va_arg(args, __t3); \
arg4 = va_arg(args, __t4); \
arg5 = va_arg(args, __t5); \
arg6 = va_arg(args, __t6); \
va_end(args); \
return fn(arg1, arg2, arg3, arg4, arg5, arg6); \
} while (0)
int rt_sigaction(int sig, const struct k_sigaction * act, struct k_sigaction * oact, size_t sigsetsize)
{
struct sigaction libc_act, libc_oact, *libc_act_p = nullptr;
memset(&libc_act, 0, sizeof(libc_act));
memset(&libc_oact, 0, sizeof(libc_act));
if (act) {
libc_act.sa_handler = act->handler;
libc_act.sa_flags = act->flags & ~SA_RESTORER;
libc_act.sa_restorer = nullptr;
memcpy(&libc_act.sa_mask, &act->mask, sizeof(libc_act.sa_mask));
libc_act_p = &libc_act;
}
int ret = sigaction(sig, libc_act_p, &libc_oact);
if (oact) {
oact->handler = libc_oact.sa_handler;
oact->flags = libc_oact.sa_flags;
oact->restorer = nullptr;
memcpy(oact->mask, &libc_oact.sa_mask, sizeof(oact->mask));
}
return ret;
}
int rt_sigprocmask(int how, sigset_t * nset, sigset_t * oset, size_t sigsetsize)
{
return sigprocmask(how, nset, oset);
}
#define __NR_sys_exit __NR_exit
static int sys_exit(int ret)
{
exit(ret);
return 0;
}
#define __NR_sys_exit_group __NR_exit_group
static int sys_exit_group(int ret)
{
exit(ret);
return 0;
}
#define __NR_sys_ioctl __NR_ioctl
//
// We need to define explicit sys_ioctl that takes these 3 parameters to conform
// to Linux signature of this system call. The underlying ioctl function which we delegate to
// is variadic and takes slightly different paremeters and therefore cannot be used directly
// as other system call implementations can.
static int sys_ioctl(unsigned int fd, unsigned int command, unsigned long arg)
{
return ioctl(fd, command, arg);
}
static int pselect6(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, const struct timespec *timeout_ts,
void *sig)
{
// As explained in the pselect(2) manual page, the system call pselect accepts
// pointer to a structure holding pointer to sigset_t and its size which is different
// the glibc version of pselect(). For now we are delaying implementation of this call
// scenario and raising an error when such call happens.
if(sig) {
WARN_ONCE("pselect6(): unimplemented with not-null sigmask\n");
errno = ENOSYS;
return -1;
}
return pselect(nfds, readfds, writefds, exceptfds, timeout_ts, NULL);
}
long syscall(long number, ...)
{
// Save FPU state and restore it at the end of this function
sched::fpu_lock fpu;
SCOPE_LOCK(fpu);
switch (number) {
SYSCALL2(open, const char *, int);
SYSCALL3(read, int, char *, size_t);
SYSCALL1(uname, struct utsname *);
SYSCALL3(write, int, const void *, size_t);
SYSCALL0(gettid);
SYSCALL2(clock_gettime, clockid_t, struct timespec *);
SYSCALL2(clock_getres, clockid_t, struct timespec *);
SYSCALL6(futex, int *, int, int, const struct timespec *, int *, int);
SYSCALL1(close, int);
SYSCALL2(pipe2, int *, int);
SYSCALL1(epoll_create1, int);
SYSCALL2(eventfd2, unsigned int, int);
SYSCALL4(epoll_ctl, int, int, int, struct epoll_event *);
SYSCALL4(epoll_wait, int, struct epoll_event *, int, int);
SYSCALL4(accept4, int, struct sockaddr *, socklen_t *, int);
SYSCALL3(connect, int, struct sockaddr *, socklen_t);
SYSCALL5(get_mempolicy, int *, unsigned long *, unsigned long, void *, int);
SYSCALL3(sched_getaffinity_syscall, pid_t, unsigned, unsigned long *);
SYSCALL6(long_mmap, void *, size_t, int, int, int, off_t);
SYSCALL2(munmap, void *, size_t);
SYSCALL4(rt_sigaction, int, const struct k_sigaction *, struct k_sigaction *, size_t);
SYSCALL4(rt_sigprocmask, int, sigset_t *, sigset_t *, size_t);
SYSCALL1(sys_exit, int);
SYSCALL2(sigaltstack, const stack_t *, stack_t *);
SYSCALL5(select, int, fd_set *, fd_set *, fd_set *, struct timeval *);
SYSCALL3(madvise, void *, size_t, int);
SYSCALL0(sched_yield);
SYSCALL3(mincore, void *, size_t, unsigned char *);
SYSCALL4(openat, int, const char *, int, mode_t);
SYSCALL3(socket, int, int, int);
SYSCALL5(setsockopt, int, int, int, char *, int);
SYSCALL5(getsockopt, int, int, int, char *, unsigned int *);
SYSCALL3(getpeername, int, struct sockaddr *, unsigned int *);
SYSCALL3(bind, int, struct sockaddr *, int);
SYSCALL2(listen, int, int);
SYSCALL3(sys_ioctl, unsigned int, unsigned int, unsigned long);
SYSCALL2(stat, const char *, struct stat *);
SYSCALL2(fstat, int, struct stat *);
SYSCALL3(getsockname, int, struct sockaddr *, socklen_t *);
SYSCALL6(sendto, int, const void *, size_t, int, const struct sockaddr *, socklen_t);
SYSCALL3(sendmsg, int, const struct msghdr *, int);
SYSCALL6(recvfrom, int, void *, size_t, int, struct sockaddr *, socklen_t *);
SYSCALL3(recvmsg, int, struct msghdr *, int);
SYSCALL3(dup3, int, int, int);
SYSCALL2(flock, int, int);
SYSCALL4(pwrite64, int, const void *, size_t, off_t);
SYSCALL1(fdatasync, int);
SYSCALL6(pselect6, int, fd_set *, fd_set *, fd_set *, const struct timespec *, void *);
SYSCALL3(fcntl, int, int, int);
SYSCALL4(pread64, int, void *, size_t, off_t);
SYSCALL2(ftruncate, int, off_t);
SYSCALL1(fsync, int);
SYSCALL5(epoll_pwait, int, struct epoll_event *, int, int, const sigset_t*);
SYSCALL3(getrandom, char *, size_t, unsigned int);
SYSCALL2(nanosleep, const struct timespec*, struct timespec *);
SYSCALL4(fstatat, int, const char *, struct stat *, int);
SYSCALL1(sys_exit_group, int);
SYSCALL4(readlinkat, int, const char *, char *, size_t);
SYSCALL0(getpid);
SYSCALL3(set_mempolicy, int, unsigned long *, unsigned long);
SYSCALL3(sched_setaffinity_syscall, pid_t, unsigned, unsigned long *);
}
debug_always("syscall(): unimplemented system call %d\n", number);
errno = ENOSYS;
return -1;
}
long __syscall(long number, ...) __attribute__((alias("syscall")));
// In x86-64, a SYSCALL instruction has exactly 6 parameters, because this is the number of registers
// alloted for passing them (additional parameters *cannot* be passed on the stack). So we can get
// 7 arguments to this function (syscall number plus its 6 parameters). Because in the x86-64 ABI the
// seventh argument is on the stack, we must pass the arguments explicitly to the syscall() function
// and can't just call it without any arguments and hope everything will be passed on
extern "C" long syscall_wrapper(long number, long p1, long p2, long p3, long p4, long p5, long p6)
{
int errno_backup = errno;
// syscall and function return value are in rax
auto ret = syscall(number, p1, p2, p3, p4, p5, p6);
int result = -errno;
errno = errno_backup;
if (ret < 0 && ret >= -4096) {
return result;
}
return ret;
}