forked from mikkelpm/het_agents_bayes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_mcmc_hh.m
136 lines (98 loc) · 5.14 KB
/
run_mcmc_hh.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
clear all;
% Simulate and estimate heterogeneous firm model
model_name = 'hh';
addpath(genpath('./functions'));
addpath(genpath(['./' model_name '_model/auxiliary_functions']));
%% Settings
% Decide what to do
is_run_dynare = true; % Process Dynare model?
is_data_gen = true; % Simulate data?
likelihood_type = 1; % =1: macro + full-info micro; =2: macro only;
% =3: macro + 3 micro moments; =4: macro + 2 micro moments; =5: macro + 1 micro moment
% ID
serial_id = 1; % ID number of current run (used in file names and RNG seeds)
% Model/data settings
T = 100; % Number of periods of simulated macro data
ts_micro = 10:10:T; % Time periods where we observe micro data
N_micro = 1e3; % Number of households per non-missing time period
% File names
global mat_suff;
mat_suff = sprintf('%s%d%s%d%s%02d', '_N', N_micro, '_liktype', likelihood_type, '_', serial_id); % Suffix string for all saved .mat files
save_folder = fullfile(pwd, 'results'); % Folder for saving results
% Parameter transformation
if ismember(likelihood_type,[1 3 4]) % When mu_l is identified
param_names = {'bbeta', 'ssigmaMeas', 'mu_l'}; % Names of parameters to estimate
transf_to_param = @(x) [1/(1+exp(-x(1))) exp(x(2)) -exp(x(3))]; % Function mapping transformed parameters into parameters of interest
param_to_transf = @(x) [log(x(1)/(1-x(1))) log(x(2)) log(-x(3))]; % Function mapping parameters of interest into transformed parameters
else % When mu_l is not identified
param_names = {'bbeta', 'ssigmaMeas'}; % Names of parameters to estimate
transf_to_param = @(x) [1/(1+exp(-x(1))) exp(x(2))]; % Function mapping transformed parameters into parameters of interest
param_to_transf = @(x) [log(x(1)/(1-x(1))) log(x(2))]; % Function mapping parameters of interest into transformed parameters
end
% Prior
prior_logdens_transf = @(x) sum(x) - 2*log(1+exp(x(1))); % Log prior density of transformed parameters
% Optimization settings
is_optimize = true; % Find posterior mode?
if ismember(likelihood_type,[1 3 4]) % When mu_l is identified
[aux1, aux2, aux3] = meshgrid(linspace(0.8,0.99,5),linspace(0.001,0.05,5),linspace(-1,-0.01,5));
optim_grid = [aux1(:), aux2(:), aux3(:)]; % Optimization grid
else % When mu_l is not identified
[aux1, aux2] = meshgrid(linspace(0.8,0.99,5),linspace(0.001,0.05,5));
optim_grid = [aux1(:), aux2(:)];
end
clearvars aux*;
% MCMC settings
if likelihood_type ~= 2
mcmc_init = param_to_transf([.9 .06 -1]); % Initial transformed draw (will be overwritten if is_optimize=true)
else % mu_l is not identified with macro data only
mcmc_init = param_to_transf([.9 .06]);
end
mcmc_num_iter = 1e4; % Number of MCMC steps (total)
mcmc_thin = 1; % Store every X draws
mcmc_stepsize_init = 1e-2; % Initial MCMC step size
mcmc_adapt_iter = [50 200 500 1000]; % Iterations at which to update the variance/covariance matrix for RWMH proposal; first iteration in list is start of adaptation phase
mcmc_adapt_diag = false; % =true: Adapt only to posterior std devs of parameters, =false: adapt to full var/cov matrix
mcmc_adapt_param = 10; % Shrinkage parameter for adapting to var/cov matrix (higher values: more shrinkage)
% Adaptive RWMH
mcmc_c = 0.55; % Updating rate parameter
mcmc_ar_tg = 0.3; % Target acceptance rate
mcmc_p_adapt = .95; % Probability of non-diffuse proposal
% Likelihood settings
num_smooth_draws = 500; % Number of draws from the smoothing distribution (for unbiased likelihood estimate)
num_interp = 100; % Number of interpolation grid points for calculating density integral
% Numerical settings
num_burnin_periods = 100; % Number of burn-in periods for simulations
rng_seed = 20200813+serial_id; % Random number generator seed
if likelihood_type == 1
delete(gcp('nocreate'));
poolobj = parpool; % Parallel computing object
end
% Dynare settings
dynare_model = 'firstOrderDynamics_polynomials'; % Dynare model file
%% Calibrate parameters, execute initial Dynare processing
run_calib_dynare;
% Approximates cross-sec distribution of assets conditional on employment
% using third-order exponential family density, as in Winberry (2018)
%% Simulate data
run_sim;
%% Measurement error
compute_meas_err_const; % Part of cov matrix of sample moments that doesn't change over parameter values
%% Find approximate mode
% Log likelihood function
ll_fct = @(M_, oo_, options_) aux_ll(simul_data_micro, ts_micro, ...
num_smooth_draws, num_burnin_periods, ...
num_interp, likelihood_type, ...
M_, oo_, options_, ...
true);
% Optimization
if is_optimize
approx_mode;
end
%% Run MCMC iterations
mkdir(save_folder);
mcmc_iter;
%% Save results
save_mat(fullfile(save_folder, model_name));
if likelihood_type == 1
delete(poolobj);
end