forked from mikkelpm/het_agents_bayes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloglike_compute.m
109 lines (76 loc) · 3.47 KB
/
loglike_compute.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
function [loglike, loglike_macro, loglike_micro]...
= loglike_compute(data_macro, ...
num_burnin_periods, smooth_vars, num_smooth_draws, ...
M_, oo_, options_, ...
data_micro, ts_micro, param, ...
varargin)
% Compute log likelihood for macro+micro data
%% Macro likelihood and mean smoother
% Run mean smoother and compute macro log likelihood
timer = tic;
[loglike_macro, smooth_means, M_new, oo_new, options_new, dataset_, dataset_info, xparam1, estim_params_, bayestopt_] ...
= likelihood_smoother(data_macro, smooth_vars, M_, oo_, options_, num_smooth_draws>0);
fprintf('Macro likelihood/smoother time: %6.1f sec\n\n', toc(timer));
%% Micro likelihood per period
if isempty(data_micro) || isempty(ts_micro)
loglike_micro = nan;
loglike = loglike_macro;
return;
end
T_micro = length(ts_micro);
nobs = dataset_.nobs;
% Fix some warning messages during parallization
options_new.dataset = [];
options_new.initial_date = [];
% Seeds for simulation smoother
rand_seeds = randi(2^32,1,num_smooth_draws);
% Random shocks for simulation smoother
if isempty(varargin)
sim_shocks = zeros(0,0,num_smooth_draws);
else
sim_shocks = varargin{1};
end
loglikes_micro = nan(1,num_smooth_draws);
disp('Micro likelihood...');
timer = tic;
% for i_draw = 1:num_smooth_draws
parfor i_draw = 1:num_smooth_draws % For each smoothing draw...
rng(rand_seeds(i_draw), 'twister'); % Set RNG
dataset_fake = struct;
dataset_fake.nobs = nobs;
% Compute smoothing draw
the_smooth_draw = simulation_smoother(smooth_means, smooth_vars, num_burnin_periods, sim_shocks(:,:,i_draw), ...
M_new, oo_new, options_new, dataset_fake, dataset_info, xparam1, estim_params_, bayestopt_);
the_smooth_draw_tab = struct2table(the_smooth_draw); % Transform struct to table
the_smooth_draw_tab = the_smooth_draw_tab(ts_micro,:); % Only retain relevant time periods for micro data
the_loglikes_micro_draw = nan(1,T_micro);
try % Once numerical issue in one period, no need to go through the remaining periods, but still run the other smooth draws
for it = 1:T_micro
% Likelihood
the_likes = likelihood_micro(the_smooth_draw_tab(it,:), permute(data_micro(it,:,:), [2 3 1]), param);
% Log likelihood
the_loglikes_micro_draw_t = log(the_likes);
the_loglikes_micro_draw(it) = sum(the_loglikes_micro_draw_t);
end
loglikes_micro(i_draw) = sum(the_loglikes_micro_draw);
catch
end
% Print progress
if mod(i_draw,ceil(num_smooth_draws/50))==0
offs = floor(50*i_draw/num_smooth_draws);
fprintf(['%' num2str(offs+3) 'd%s\n'], round(100*i_draw/num_smooth_draws), '%');
end
end
fprintf('Micro likelihood time: %6.1f sec\n\n', toc(timer));
%% Sum log likelihood
% Micro log likelihood
ix_micro = isfinite(loglikes_micro);
if sum(ix_micro) > 0 % as long as there is a draw that survives
loglikes_micro = loglikes_micro(ix_micro);
log_max = max(loglikes_micro);
loglike_micro = log_max + log(mean(exp(loglikes_micro-log_max))); % Formula deals with underflow
else
loglike_micro = nan;
end
loglike = loglike_macro + loglike_micro; % Total log likelihood
end