diff --git a/tests/lean/run/3807.lean b/tests/lean/run/3807.lean new file mode 100644 index 000000000000..d6fcc48661bf --- /dev/null +++ b/tests/lean/run/3807.lean @@ -0,0 +1,2527 @@ +import Lean.Elab.Binders + +/-! + +This is a test case extracted from Mathlib exhibiting a slow-down in `IsDefEq` after +https://github.com/leanprover/lean4/pull/3807 + +I've tried to keep this representative of the problem as it exhibits in Mathlib. +Further minimization is certainly possible, +but I think it makes a better test case going forward as is. + +The original declaration take around 16,000 heartbeats prior to #3807, but around 210,000 after. + +-/ + + + +section Mathlib.Tactic.Spread + +open Lean Parser.Term Macro + +syntax (name := letImplDetailStx) "let_impl_detail " ident " := " term "; " term : term + +open Lean Elab Term Meta + +@[term_elab letImplDetailStx] +def elabLetImplDetail : TermElab := fun stx expectedType? => + match stx with + | `(let_impl_detail $id := $valStx; $body) => do + let val ← elabTerm valStx none + let type ← inferType val + trace[Elab.let.decl] "{id.getId} : {type} := {val}" + let result ← + withLetDecl id.getId (kind := .default) type val fun x => do + addLocalVarInfo id x + let lctx ← getLCtx + let lctx := lctx.modifyLocalDecl x.fvarId! fun decl => decl.setKind .implDetail + withLCtx lctx (← getLocalInstances) do + let body ← elabTermEnsuringType body expectedType? + let body ← instantiateMVars body + mkLetFVars #[x] body (usedLetOnly := false) + pure result + | _ => throwUnsupportedSyntax + +macro_rules +| `({ $[$srcs,* with]? $[$fields],* $[: $ty?]? }) => show MacroM Term from do + let mut spreads := #[] + let mut newFields := #[] + + for field in fields do + match field.1 with + | `(structInstField| $name:ident := $arg) => + if name.getId.eraseMacroScopes == `__ then do + spreads := spreads.push arg + else + newFields := newFields.push field + | `(structInstFieldAbbrev| $_:ident) => + newFields := newFields.push field + | _ => + throwUnsupported + + if spreads.isEmpty then throwUnsupported + + let spreadData ← withFreshMacroScope <| spreads.mapIdxM fun i spread => do + let n := Name.num `__spread i + return (mkIdent <| ← Macro.addMacroScope n, spread) + + let srcs := (srcs.map (·.getElems)).getD {} ++ spreadData.map Prod.fst + let body ← `({ $srcs,* with $[$newFields],* $[: $ty?]? }) + spreadData.foldrM (init := body) fun (id, val) body => `(let_impl_detail $id := $val; $body) + +end Mathlib.Tactic.Spread + +section Mathlib.Init.Order.Defs + +universe u + +class Preorder (α : Type u) extends LE α, LT α where + le_refl : ∀ a : α, a ≤ a + le_trans : ∀ a b c : α, a ≤ b → b ≤ c → a ≤ c + lt := fun a b => a ≤ b ∧ ¬b ≤ a + lt_iff_le_not_le : ∀ a b : α, a < b ↔ a ≤ b ∧ ¬b ≤ a := by intros; rfl + +theorem le_rfl {α} [Preorder α] {a : α} : a ≤ a := + Preorder.le_refl a + +class PartialOrder (α : Type u) extends Preorder α where + le_antisymm : ∀ a b : α, a ≤ b → b ≤ a → a = b + +end Mathlib.Init.Order.Defs + +section Mathlib.Init.ZeroOne + +set_option autoImplicit true + +class Zero.{u} (α : Type u) where + zero : α + +instance (priority := 300) Zero.toOfNat0 {α} [Zero α] : OfNat α (nat_lit 0) where + ofNat := ‹Zero α›.1 + +class One (α : Type u) where + one : α + +instance (priority := 300) One.toOfNat1 {α} [One α] : OfNat α (nat_lit 1) where + ofNat := ‹One α›.1 + +end Mathlib.Init.ZeroOne + +section Mathlib.Init.Function + +universe u₁ u₂ + +namespace Function + +variable {α : Sort u₁} {β : Sort u₂} + +def Injective (f : α → β) : Prop := + ∀ ⦃a₁ a₂⦄, f a₁ = f a₂ → a₁ = a₂ + +def LeftInverse (g : β → α) (f : α → β) : Prop := + ∀ x, g (f x) = x + +def HasLeftInverse (f : α → β) : Prop := + ∃ finv : β → α, LeftInverse finv f + +end Function + +end Mathlib.Init.Function + +section Mathlib.Init.Set + +set_option autoImplicit true + +def Set (α : Type u) := α → Prop + +def setOf {α : Type u} (p : α → Prop) : Set α := p + +namespace Set + +protected def Mem (a : α) (s : Set α) : Prop := s a + +instance : Membership α (Set α) := ⟨Set.Mem⟩ + +protected def Subset (s₁ s₂ : Set α) := ∀ ⦃a⦄, a ∈ s₁ → a ∈ s₂ + +instance : LE (Set α) := ⟨Set.Subset⟩ + +instance : HasSubset (Set α) := ⟨(· ≤ ·)⟩ + +instance : EmptyCollection (Set α) := ⟨fun _ ↦ False⟩ + +def univ : Set α := setOf fun _ ↦ True + +protected def union (s₁ s₂ : Set α) : Set α := setOf fun a => a ∈ s₁ ∨ a ∈ s₂ + +instance : Union (Set α) := ⟨Set.union⟩ + +protected def inter (s₁ s₂ : Set α) : Set α := setOf fun a => a ∈ s₁ ∧ a ∈ s₂ + +instance : Inter (Set α) := ⟨Set.inter⟩ + +protected def diff (s t : Set α) : Set α := setOf fun a => a ∈ s ∧ a ∉ t + +instance : SDiff (Set α) := ⟨Set.diff⟩ + +def image (f : α → β) (s : Set α) : Set β := setOf fun b => ∃ a ∈ s, f a = b + + +end Set + + +end Mathlib.Init.Set + +section Mathlib.Logic.Nonempty + +instance (priority := 20) Zero.instNonempty {α} [Zero α] : Nonempty α := ⟨0⟩ + +protected noncomputable def Classical.arbitrary (α) [h : Nonempty α] : α := + Classical.choice h + +end Mathlib.Logic.Nonempty + +section Mathlib.Logic.Function.Basic + +universe u + +namespace Function + +variable {α β : Sort _} [Nonempty α] {f : α → β} {a : α} {b : β} + +attribute [local instance] Classical.propDecidable + +noncomputable def invFun {α : Sort u} {β} [Nonempty α] (f : α → β) : β → α := + fun y ↦ if h : (∃ x, f x = y) then h.choose else Classical.arbitrary α + +theorem Injective.hasLeftInverse (hf : Injective f) : HasLeftInverse f := + ⟨invFun f, sorry⟩ + +end Function + +end Mathlib.Logic.Function.Basic + +section Mathlib.Data.FunLike.Basic + +class DFunLike (F : Sort _) (α : outParam (Sort _)) (β : outParam <| α → Sort _) where + coe : F → ∀ a : α, β a + +abbrev FunLike F α β := DFunLike F α fun _ => β + +instance (priority := 100) hasCoeToFun {F α β} [DFunLike F α β] : CoeFun F (fun _ ↦ ∀ a : α, β a) where + coe := @DFunLike.coe _ _ β _ + +end Mathlib.Data.FunLike.Basic + +section Mathlib.Data.FunLike.Equiv + +class EquivLike (E : Sort _) (α β : outParam (Sort _)) where + coe : E → α → β + inv : E → β → α + + +namespace EquivLike + +variable {E α β : Sort _} [iE : EquivLike E α β] + +instance (priority := 100) toFunLike : FunLike E α β where + coe := (coe : E → α → β) + +end EquivLike + +end Mathlib.Data.FunLike.Equiv + +section Mathlib.Logic.Equiv.Defs + +open Function + +universe u v + +variable {α : Sort u} {β : Sort v} + +structure Equiv (α : Sort _) (β : Sort _) where + protected toFun : α → β + protected invFun : β → α + +infixl:25 " ≃ " => Equiv + +namespace Equiv + +protected def symm (e : α ≃ β) : β ≃ α := ⟨e.invFun, e.toFun⟩ + +end Equiv + +end Mathlib.Logic.Equiv.Defs + +section Mathlib.Data.Subtype + +variable {α : Sort _} {p q : α → Prop} + +theorem Subtype.coe_injective : Function.Injective (fun (a : Subtype p) ↦ (a : α)) := sorry + +end Mathlib.Data.Subtype + +section Mathlib.Order.Notation + +class HasCompl (α : Type _) where + compl : α → α + +export HasCompl (compl) + +postfix:1024 "ᶜ" => compl + +class Sup (α : Type _) where + sup : α → α → α + +class Inf (α : Type _) where + inf : α → α → α + +infixl:68 " ⊔ " => Sup.sup + +infixl:69 " ⊓ " => Inf.inf + +class HImp (α : Type _) where + himp : α → α → α + +class HNot (α : Type _) where + hnot : α → α + +export HImp (himp) +export HNot (hnot) + +infixr:60 " ⇨ " => himp + +prefix:72 "¬" => hnot + + +class Top (α : Type _) where + top : α + +class Bot (α : Type _) where + bot : α + +notation "⊤" => Top.top + +notation "⊥" => Bot.bot + + +end Mathlib.Order.Notation + +section Mathlib.Data.Set.Defs + +universe u v w + +namespace Set + +variable {α : Type u} {β : Type v} {γ : Type w} + +instance : HasCompl (Set α) := ⟨fun s ↦ setOf fun x => x ∉ s⟩ + +@[reducible] def Elem (s : Set α) : Type u := {x // x ∈ s} + +instance : CoeSort (Set α) (Type u) := ⟨Elem⟩ + +/-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ +infixl:80 " '' " => image + + +variable {ι : Sort _} {f : ι → α} + +def range (f : ι → α) : Set α := setOf fun x => ∃ y, f y = x + +end Set + +end Mathlib.Data.Set.Defs + +section Mathlib.Order.SetNotation + +open Set + +universe u v +variable {α : Type u} {ι : Sort v} + +class SupSet (α : Type _) where + sSup : Set α → α + +class InfSet (α : Type _) where + sInf : Set α → α + +def iSup [SupSet α] (s : ι → α) : α := + SupSet.sSup (range s) + +def iInf [InfSet α] (s : ι → α) : α := + InfSet.sInf (range s) + + +namespace Set + +instance : InfSet (Set α) := + ⟨fun s => setOf fun a => ∀ t ∈ s, a ∈ t⟩ + +instance : SupSet (Set α) := + ⟨fun s => setOf fun a => ∃ t ∈ s, a ∈ t⟩ + +def iUnion (s : ι → Set α) : Set α := + iSup s + +def iInter (s : ι → Set α) : Set α := + iInf s + +end Set + +end Mathlib.Order.SetNotation + +section Mathlib.Order.Basic + +open Function + +universe u v w + +variable {ι : Type _} {α : Type u} {β : Type v} {γ : Type w} {π : ι → Type _} {r : α → α → Prop} + +instance Prop.hasCompl : HasCompl Prop := + ⟨Not⟩ + +instance Pi.hasCompl {ι : Type u} {α : ι → Type v} [∀ i, HasCompl (α i)] : HasCompl (∀ i, α i) := + ⟨fun x i ↦ (x i)ᶜ⟩ + +instance Pi.hasLe {ι : Type u} {α : ι → Type v} [∀ i, LE (α i)] : + LE (∀ i, α i) where le x y := ∀ i, x i ≤ y i + +instance Pi.preorder {ι : Type u} {α : ι → Type v} [∀ i, Preorder (α i)] : Preorder (∀ i, α i) where + __ := inferInstanceAs (LE (∀ i, α i)) + le_refl := sorry + le_trans := sorry + +instance Pi.partialOrder [∀ i, PartialOrder (π i)] : PartialOrder (∀ i, π i) where + __ := Pi.preorder + le_antisymm := sorry + +instance Pi.sdiff {ι : Type u} {α : ι → Type v} [∀ i, SDiff (α i)] : SDiff (∀ i, α i) := + ⟨fun x y i ↦ x i \ y i⟩ + +def Preorder.lift {α β} [Preorder β] (f : α → β) : Preorder α where + le x y := f x ≤ f y + le_refl _ := sorry + le_trans _ _ _ := sorry + lt x y := f x < f y + lt_iff_le_not_le _ _ := sorry + +def PartialOrder.lift {α β} [PartialOrder β] (f : α → β) (inj : Injective f) : PartialOrder α := + { Preorder.lift f with + le_antisymm := sorry } + +section «Prop» + +instance Prop.le : LE Prop := + ⟨(· → ·)⟩ + +instance Prop.partialOrder : PartialOrder Prop where + __ := Prop.le + le_refl _ := id + le_trans _ _ _ f g := g ∘ f + le_antisymm _ _ Hab Hba := sorry + +end «Prop» + +end Mathlib.Order.Basic + + +section Mathlib.Order.Lattice + +universe u v w + +variable {α : Type u} {β : Type v} + +class SemilatticeSup (α : Type u) extends Sup α, PartialOrder α where + + protected le_sup_left : ∀ a b : α, a ≤ a ⊔ b + protected le_sup_right : ∀ a b : α, b ≤ a ⊔ b + protected sup_le : ∀ a b c : α, a ≤ c → b ≤ c → a ⊔ b ≤ c + +class SemilatticeInf (α : Type u) extends Inf α, PartialOrder α where + protected inf_le_left : ∀ a b : α, a ⊓ b ≤ a + protected inf_le_right : ∀ a b : α, a ⊓ b ≤ b + protected le_inf : ∀ a b c : α, a ≤ b → a ≤ c → a ≤ b ⊓ c + +class Lattice (α : Type u) extends SemilatticeSup α, SemilatticeInf α + +class DistribLattice (α) extends Lattice α where + protected le_sup_inf : ∀ x y z : α, (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ y ⊓ z + +def DistribLattice.ofInfSupLe [Lattice α] (inf_sup_le : ∀ a b c : α, a ⊓ (b ⊔ c) ≤ a ⊓ b ⊔ a ⊓ c) : + DistribLattice α where + le_sup_inf := sorry + +namespace Pi + +variable {ι : Type _} {α' : ι → Type _} + +instance [∀ i, Sup (α' i)] : Sup (∀ i, α' i) := + ⟨fun f g i => f i ⊔ g i⟩ + +instance [∀ i, Inf (α' i)] : Inf (∀ i, α' i) := + ⟨fun f g i => f i ⊓ g i⟩ + +instance instSemilatticeSup [∀ i, SemilatticeSup (α' i)] : SemilatticeSup (∀ i, α' i) where + le_sup_left _ _ _ := sorry + le_sup_right _ _ _ := sorry + sup_le _ _ _ ac bc i := sorry + +instance instSemilatticeInf [∀ i, SemilatticeInf (α' i)] : SemilatticeInf (∀ i, α' i) where + inf_le_left _ _ _ := sorry + inf_le_right _ _ _ := sorry + le_inf _ _ _ ac bc i := sorry + +instance instLattice [∀ i, Lattice (α' i)] : Lattice (∀ i, α' i) where + __ := inferInstanceAs (SemilatticeSup (∀ i, α' i)) + __ := inferInstanceAs (SemilatticeInf (∀ i, α' i)) + +instance instDistribLattice [∀ i, DistribLattice (α' i)] : DistribLattice (∀ i, α' i) where + le_sup_inf _ _ _ _ := sorry + +end Pi + + +end Mathlib.Order.Lattice + +section Mathlib.Order.BoundedOrder + +universe u v + +variable {α : Type u} {β : Type v} {γ δ : Type _} + +class OrderTop (α : Type u) [LE α] extends Top α where + le_top : ∀ a : α, a ≤ ⊤ + +section OrderTop + +section LE + +variable [LE α] [OrderTop α] {a : α} + +theorem le_top : a ≤ ⊤ := + OrderTop.le_top a + +end LE + +end OrderTop + +class OrderBot (α : Type u) [LE α] extends Bot α where + bot_le : ∀ a : α, ⊥ ≤ a + +section OrderBot + +section LE + +variable [LE α] [OrderBot α] {a : α} + +theorem bot_le : ⊥ ≤ a := + OrderBot.bot_le a + +end LE + +end OrderBot + +class BoundedOrder (α : Type u) [LE α] extends OrderTop α, OrderBot α + +namespace Pi + +variable {ι : Type _} {α' : ι → Type _} + +instance instOrderTop [∀ i, LE (α' i)] [∀ i, OrderTop (α' i)] : OrderTop (∀ i, α' i) where + le_top _ := fun _ => le_top + +instance instOrderBot [∀ i, LE (α' i)] [∀ i, OrderBot (α' i)] : OrderBot (∀ i, α' i) where + bot_le _ := fun _ => bot_le + +end Pi + + +end Mathlib.Order.BoundedOrder + +section Mathlib.Order.PropInstances + +instance Prop.instDistribLattice : DistribLattice Prop where + sup := Or + le_sup_left := @Or.inl + le_sup_right := @Or.inr + sup_le := fun _ _ _ => Or.rec + inf := And + inf_le_left := @And.left + inf_le_right := @And.right + le_inf := fun _ _ _ Hab Hac Ha => And.intro (Hab Ha) (Hac Ha) + le_sup_inf := fun _ _ _ => or_and_left.2 + +instance Prop.instBoundedOrder : BoundedOrder Prop where + top := True + le_top _ _ := True.intro + bot := False + bot_le := @False.elim + +end Mathlib.Order.PropInstances + +section Mathlib.Order.Heyting.Basic + +universe u + +variable {ι α β : Type _} + +namespace Pi + +variable {π : ι → Type _} + +instance [∀ i, HImp (π i)] : HImp (∀ i, π i) := + ⟨fun a b i => a i ⇨ b i⟩ + +end Pi + +class GeneralizedHeytingAlgebra (α : Type _) extends Lattice α, OrderTop α, HImp α where + le_himp_iff (a b c : α) : a ≤ b ⇨ c ↔ a ⊓ b ≤ c + +class GeneralizedCoheytingAlgebra (α : Type _) extends Lattice α, OrderBot α, SDiff α where + sdiff_le_iff (a b c : α) : a \ b ≤ c ↔ a ≤ b ⊔ c + +class HeytingAlgebra (α : Type _) extends GeneralizedHeytingAlgebra α, OrderBot α, HasCompl α where + himp_bot (a : α) : a ⇨ ⊥ = aᶜ + +class CoheytingAlgebra (α : Type _) extends GeneralizedCoheytingAlgebra α, OrderTop α, HNot α where + top_sdiff (a : α) : ⊤ \ a = ¬a + +class BiheytingAlgebra (α : Type _) extends HeytingAlgebra α, SDiff α, HNot α where + sdiff_le_iff (a b c : α) : a \ b ≤ c ↔ a ≤ b ⊔ c + top_sdiff (a : α) : ⊤ \ a = ¬a + +section GeneralizedHeytingAlgebra + +variable [GeneralizedHeytingAlgebra α] {a b c d : α} + +instance (priority := 100) GeneralizedHeytingAlgebra.toDistribLattice : DistribLattice α := + DistribLattice.ofInfSupLe fun a b c => sorry + +instance Pi.instGeneralizedHeytingAlgebra {α : ι → Type _} [∀ i, GeneralizedHeytingAlgebra (α i)] : + GeneralizedHeytingAlgebra (∀ i, α i) := + { Pi.instLattice, Pi.instOrderTop with + le_himp_iff := sorry } + +end GeneralizedHeytingAlgebra + + +section HeytingAlgebra + +variable [HeytingAlgebra α] {a b c : α} + +instance Pi.instHeytingAlgebra {α : ι → Type _} [∀ i, HeytingAlgebra (α i)] : + HeytingAlgebra (∀ i, α i) := + { Pi.instOrderBot, Pi.instGeneralizedHeytingAlgebra with + himp_bot := sorry } + +end HeytingAlgebra + +instance Prop.instHeytingAlgebra : HeytingAlgebra Prop := + { Prop.instDistribLattice, Prop.instBoundedOrder with + himp := (· → ·), + le_himp_iff := sorry + himp_bot := sorry } + +end Mathlib.Order.Heyting.Basic + +section Mathlib.Order.BooleanAlgebra + +universe u v + +variable {α : Type u} {β : Type _} {w x y z : α} + +class GeneralizedBooleanAlgebra (α : Type u) extends DistribLattice α, SDiff α, Bot α where + sup_inf_sdiff : ∀ a b : α, a ⊓ b ⊔ a \ b = a + inf_inf_sdiff : ∀ a b : α, a ⊓ b ⊓ a \ b = ⊥ + +section GeneralizedBooleanAlgebra + +variable [GeneralizedBooleanAlgebra α] + +instance (priority := 100) GeneralizedBooleanAlgebra.toOrderBot : OrderBot α where + __ := GeneralizedBooleanAlgebra.toBot + bot_le a := sorry + +instance (priority := 100) GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra : + GeneralizedCoheytingAlgebra α where + __ := ‹GeneralizedBooleanAlgebra α› + __ := GeneralizedBooleanAlgebra.toOrderBot + sdiff := (· \ ·) + sdiff_le_iff y x z := sorry + +end GeneralizedBooleanAlgebra + +class BooleanAlgebra (α : Type u) extends + DistribLattice α, HasCompl α, SDiff α, HImp α, Top α, Bot α where + inf_compl_le_bot : ∀ x : α, x ⊓ xᶜ ≤ ⊥ + top_le_sup_compl : ∀ x : α, ⊤ ≤ x ⊔ xᶜ + le_top : ∀ a : α, a ≤ ⊤ + bot_le : ∀ a : α, ⊥ ≤ a + sdiff := fun x y => x ⊓ yᶜ + himp := fun x y => y ⊔ xᶜ + sdiff_eq : ∀ x y : α, x \ y = x ⊓ yᶜ + himp_eq : ∀ x y : α, x ⇨ y = y ⊔ xᶜ + +section BooleanAlgebra + +variable [BooleanAlgebra α] + +instance (priority := 100) BooleanAlgebra.toGeneralizedBooleanAlgebra : + GeneralizedBooleanAlgebra α where + __ := ‹BooleanAlgebra α› + sup_inf_sdiff a b := sorry + inf_inf_sdiff a b := sorry + +instance (priority := 100) BooleanAlgebra.toBiheytingAlgebra : BiheytingAlgebra α where + __ := ‹BooleanAlgebra α› + __ := GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra + hnot := compl + le_himp_iff a b c := sorry + himp_bot _ := sorry + top_sdiff a := sorry + +end BooleanAlgebra + +instance Prop.instBooleanAlgebra : BooleanAlgebra Prop where + __ := Prop.instHeytingAlgebra + __ := GeneralizedHeytingAlgebra.toDistribLattice + compl := Not + sdiff_eq := sorry + himp_eq p q := sorry + inf_compl_le_bot p H := sorry + top_le_sup_compl p _ := sorry + +instance Pi.instBooleanAlgebra {ι : Type u} {α : ι → Type v} [∀ i, BooleanAlgebra (α i)] : + BooleanAlgebra (∀ i, α i) where + __ := Pi.sdiff + __ := Pi.instHeytingAlgebra + __ := @Pi.instDistribLattice ι α _ + sdiff_eq _ _ := sorry + himp_eq _ _ := sorry + inf_compl_le_bot _ _ := sorry + top_le_sup_compl _ _ := sorry + +end Mathlib.Order.BooleanAlgebra + +section Mathlib.Data.Set.Basic + +universe u +namespace Set + +variable {α : Type u} {s t : Set α} + +instance instBooleanAlgebraSet : BooleanAlgebra (Set α) := + { (inferInstance : BooleanAlgebra (α → Prop)) with + sup := (· ∪ ·), + le := (· ≤ ·), + lt := fun s t => s ⊆ t ∧ ¬t ⊆ s, + inf := (· ∩ ·), + bot := ∅, + compl := (·ᶜ), + top := univ, + sdiff := (· \ ·) } + +end Set + +namespace Set + +variable {α : Type _} {s t u : Set α} + +def inclusion (h : s ⊆ t) : s → t := fun x : s => (⟨x, h x.2⟩ : t) + +end Set + +end Mathlib.Data.Set.Basic + +section Mathlib.Data.SetLike.Basic + +class SetLike (A : Type _) (B : outParam <| Type _) where + protected coe : A → Set B + +namespace SetLike + +variable {A : Type _} {B : Type _} [i : SetLike A B] + +instance : CoeTC A (Set B) where coe := SetLike.coe + +instance (priority := 100) instMembership : Membership B A := + ⟨fun x p => x ∈ (p : Set B)⟩ + +instance (priority := 100) : CoeSort A (Type _) := + ⟨fun p => { x : B // x ∈ p }⟩ + +instance (priority := 100) instPartialOrder : PartialOrder A := + { PartialOrder.lift (SetLike.coe : A → Set B) sorry with + le := fun H K => ∀ ⦃x⦄, x ∈ H → x ∈ K } + +theorem coe_subset_coe {S T : A} : (S : Set B) ⊆ T ↔ S ≤ T := + Iff.rfl + +end SetLike + + +end Mathlib.Data.SetLike.Basic +section Mathlib.Algebra.Group.Defs + +universe u v w + +open Function + +class HSMul (α : Type u) (β : Type v) (γ : outParam (Type w)) where + hSMul : α → β → γ + +class SMul (M : Type u) (α : Type v) where + smul : M → α → α + +infixr:73 " • " => HSMul.hSMul + +macro_rules | `($x • $y) => `(leftact% HSMul.hSMul $x $y) + +instance instHSMul {α β} [SMul α β] : HSMul α β β where + hSMul := SMul.smul + +variable {G : Type _} + +class Inv (α : Type u) where + inv : α → α + +postfix:max "⁻¹" => Inv.inv + +class Semigroup (G : Type u) extends Mul G where + protected mul_assoc : ∀ a b c : G, a * b * c = a * (b * c) + +class AddSemigroup (G : Type u) extends Add G where + protected add_assoc : ∀ a b c : G, a + b + c = a + (b + c) + +class AddCommMagma (G : Type u) extends Add G where + protected add_comm : ∀ a b : G, a + b = b + a + +class CommMagma (G : Type u) extends Mul G where + protected mul_comm : ∀ a b : G, a * b = b * a + +class CommSemigroup (G : Type u) extends Semigroup G, CommMagma G where + + +class AddCommSemigroup (G : Type u) extends AddSemigroup G, AddCommMagma G where + +class MulOneClass (M : Type u) extends One M, Mul M where + protected one_mul : ∀ a : M, 1 * a = a + protected mul_one : ∀ a : M, a * 1 = a + +class AddZeroClass (M : Type u) extends Zero M, Add M where + protected zero_add : ∀ a : M, 0 + a = a + protected add_zero : ∀ a : M, a + 0 = a + +section + +variable {M : Type u} + +/-- The fundamental power operation in a monoid. `npowRec n a = a*a*...*a` n times. +Use instead `a ^ n`, which has better definitional behavior. -/ +def npowRec [One M] [Mul M] : Nat → M → M + | 0, _ => 1 + | n + 1, a => npowRec n a * a + +/-- The fundamental scalar multiplication in an additive monoid. `nsmulRec n a = a+a+...+a` n +times. Use instead `n • a`, which has better definitional behavior. -/ +def nsmulRec [Zero M] [Add M] : Nat → M → M + | 0, _ => 0 + | n + 1, a => nsmulRec n a + a + +end + +class AddMonoid (M : Type u) extends AddSemigroup M, AddZeroClass M where + protected nsmul : Nat → M → M + protected nsmul_zero : ∀ x, nsmul 0 x = 0 := by intros; rfl + protected nsmul_succ : ∀ (n : Nat) (x), nsmul (n + 1) x = nsmul n x + x := by intros; rfl + +attribute [instance 150] AddSemigroup.toAdd +attribute [instance 50] AddZeroClass.toAdd + +class Monoid (M : Type u) extends Semigroup M, MulOneClass M where + protected npow : Nat → M → M := npowRec + protected npow_zero : ∀ x, npow 0 x = 1 := by intros; rfl + protected npow_succ : ∀ (n : Nat) (x), npow (n + 1) x = npow n x * x := by intros; rfl + +@[default_instance high] instance Monoid.toNatPow {M : Type _} [Monoid M] : Pow M Nat := + ⟨fun x n ↦ Monoid.npow n x⟩ + +instance AddMonoid.toNatSMul {M : Type _} [AddMonoid M] : SMul Nat M := + ⟨AddMonoid.nsmul⟩ + +class AddCommMonoid (M : Type u) extends AddMonoid M, AddCommSemigroup M + +class CommMonoid (M : Type u) extends Monoid M, CommSemigroup M + +def zpowRec {M : Type _} [One M] [Mul M] [Inv M] : Int → M → M + | Int.ofNat n, a => npowRec n a + | Int.negSucc n, a => (npowRec n.succ a)⁻¹ + +def zsmulRec {M : Type _} [Zero M] [Add M] [Neg M] : Int → M → M + | Int.ofNat n, a => nsmulRec n a + | Int.negSucc n, a => -nsmulRec n.succ a + +def DivInvMonoid.div' {G : Type u} [Monoid G] [Inv G] (a b : G) : G := a * b⁻¹ + +class DivInvMonoid (G : Type u) extends Monoid G, Inv G, Div G where + protected div := DivInvMonoid.div' + protected div_eq_mul_inv : ∀ a b : G, a / b = a * b⁻¹ := by intros; rfl + protected zpow : Int → G → G := zpowRec + protected zpow_zero' : ∀ a : G, zpow 0 a = 1 := by intros; rfl + protected zpow_succ' (n : Nat) (a : G) : zpow (Int.ofNat n.succ) a = zpow (Int.ofNat n) a * a := by + intros; rfl + protected zpow_neg' (n : Nat) (a : G) : zpow (Int.negSucc n) a = (zpow n.succ a)⁻¹ := by intros; rfl + +def SubNegMonoid.sub' {G : Type u} [AddMonoid G] [Neg G] (a b : G) : G := a + -b + +class SubNegMonoid (G : Type u) extends AddMonoid G, Neg G, Sub G where + protected sub := SubNegMonoid.sub' + protected sub_eq_add_neg : ∀ a b : G, a - b = a + -b := by intros; rfl + protected zsmul : Int → G → G + protected zsmul_zero' : ∀ a : G, zsmul 0 a = 0 := by intros; rfl + protected zsmul_succ' (n : Nat) (a : G) : + zsmul (Int.ofNat n.succ) a = zsmul (Int.ofNat n) a + a := by + intros; rfl + protected zsmul_neg' (n : Nat) (a : G) : zsmul (Int.negSucc n) a = -zsmul n.succ a := by + intros; rfl + +instance DivInvMonoid.Pow {M} [DivInvMonoid M] : Pow M Int := + ⟨fun x n ↦ DivInvMonoid.zpow n x⟩ + +instance SubNegMonoid.SMulInt {M} [SubNegMonoid M] : SMul Int M := + ⟨SubNegMonoid.zsmul⟩ + +class Group (G : Type u) extends DivInvMonoid G where + protected mul_left_inv : ∀ a : G, a⁻¹ * a = 1 + +class AddGroup (A : Type u) extends SubNegMonoid A where + protected add_left_neg : ∀ a : A, -a + a = 0 + +class AddCommGroup (G : Type u) extends AddGroup G, AddCommMonoid G + +class CommGroup (G : Type u) extends Group G, CommMonoid G + +end Mathlib.Algebra.Group.Defs + +section Mathlib.Algebra.GroupWithZero.Defs + +universe u + +variable {G₀ : Type u} {M₀ M₀' G₀' : Type _} + +class MulZeroClass (M₀ : Type u) extends Mul M₀, Zero M₀ where + zero_mul : ∀ a : M₀, 0 * a = 0 + mul_zero : ∀ a : M₀, a * 0 = 0 + +class SemigroupWithZero (S₀ : Type u) extends Semigroup S₀, MulZeroClass S₀ + +class MulZeroOneClass (M₀ : Type u) extends MulOneClass M₀, MulZeroClass M₀ + +class MonoidWithZero (M₀ : Type u) extends Monoid M₀, MulZeroOneClass M₀, SemigroupWithZero M₀ + +class GroupWithZero (G₀ : Type u) extends MonoidWithZero G₀, DivInvMonoid G₀ where + inv_zero : (0 : G₀)⁻¹ = 0 + mul_inv_cancel (a : G₀) : a ≠ 0 → a * a⁻¹ = 1 + +end Mathlib.Algebra.GroupWithZero.Defs + +section Mathlib.Algebra.Group.Hom.Defs + +variable {ι α β M N A B P : Type _} +variable {G : Type _} {H : Type _} +variable {F : Type _} + +section Zero + +structure ZeroHom (M : Type _) (N : Type _) [Zero M] [Zero N] where + protected toFun : M → N + protected map_zero' : toFun 0 = 0 + +class ZeroHomClass (F : Type _) (M N : outParam (Type _)) [Zero M] [Zero N] [FunLike F M N] : Prop + where + map_zero : ∀ f : F, f 0 = 0 + +end Zero + +section Add + +structure AddHom (M : Type _) (N : Type _) [Add M] [Add N] where + protected toFun : M → N + protected map_add' : ∀ x y, toFun (x + y) = toFun x + toFun y + +class AddHomClass (F : Type _) (M N : outParam (Type _)) [Add M] [Add N] [FunLike F M N] : Prop where + map_add : ∀ (f : F) (x y : M), f (x + y) = f x + f y + +end Add + + +structure AddMonoidHom (M : Type _) (N : Type _) [AddZeroClass M] [AddZeroClass N] extends + ZeroHom M N, AddHom M N + +infixr:25 " →+ " => AddMonoidHom + +class AddMonoidHomClass (F M N : Type _) [AddZeroClass M] [AddZeroClass N] [FunLike F M N] + extends AddHomClass F M N, ZeroHomClass F M N : Prop + +section One + +variable [One M] [One N] + +structure OneHom (M : Type _) (N : Type _) [One M] [One N] where + protected toFun : M → N + protected map_one' : toFun 1 = 1 + +class OneHomClass (F : Type _) (M N : outParam (Type _)) [One M] [One N] [FunLike F M N] : Prop where + map_one : ∀ f : F, f 1 = 1 + +instance OneHom.funLike : FunLike (OneHom M N) M N where + coe := OneHom.toFun + +variable [FunLike F M N] + +def OneHomClass.toOneHom [OneHomClass F M N] (f : F) : OneHom M N where + toFun := f + map_one' := sorry + +instance [OneHomClass F M N] : CoeTC F (OneHom M N) := + ⟨OneHomClass.toOneHom⟩ + +end One + +section Zero + +variable [Zero M] [Zero N] + +instance ZeroHom.funLike : FunLike (ZeroHom M N) M N where + coe := ZeroHom.toFun + +variable [FunLike F M N] + +def ZeroHomClass.toZeroHom [ZeroHomClass F M N] (f : F) : ZeroHom M N where + toFun := f + map_zero' := sorry + +instance [ZeroHomClass F M N] : CoeTC F (ZeroHom M N) := + ⟨ZeroHomClass.toZeroHom⟩ + +end Zero + +section Mul + +variable [Mul M] [Mul N] + +structure MulHom (M : Type _) (N : Type _) [Mul M] [Mul N] where + protected toFun : M → N + protected map_mul' : ∀ x y, toFun (x * y) = toFun x * toFun y + +infixr:25 " →ₙ* " => MulHom + +class MulHomClass (F : Type _) (M N : outParam (Type _)) [Mul M] [Mul N] [FunLike F M N] : Prop where + map_mul : ∀ (f : F) (x y : M), f (x * y) = f x * f y + +instance MulHom.funLike : FunLike (M →ₙ* N) M N where + coe := MulHom.toFun + +variable [FunLike F M N] + +def MulHomClass.toMulHom [MulHomClass F M N] (f : F) : M →ₙ* N where + toFun := f + map_mul' := sorry + +instance [MulHomClass F M N] : CoeTC F (M →ₙ* N) := + ⟨MulHomClass.toMulHom⟩ + +end Mul + +section Add + +variable [Add M] [Add N] + +instance AddHom.funLike : FunLike (AddHom M N) M N where + coe := AddHom.toFun + +variable [FunLike F M N] + +def AddHomClass.toAddHom [AddHomClass F M N] (f : F) : AddHom M N where + toFun := f + map_add' := sorry + +instance [AddHomClass F M N] : CoeTC F (AddHom M N) := + ⟨AddHomClass.toAddHom⟩ + +end Add + +variable [MulOneClass M] [MulOneClass N] [AddZeroClass A] [AddZeroClass B] + +structure MonoidHom (M : Type _) (N : Type _) [MulOneClass M] [MulOneClass N] extends + OneHom M N, M →ₙ* N + +infixr:25 " →* " => MonoidHom + +class MonoidHomClass (F : Type _) (M N : outParam (Type _)) [MulOneClass M] [MulOneClass N] + [FunLike F M N] + extends MulHomClass F M N, OneHomClass F M N : Prop + +instance MonoidHom.instFunLike : FunLike (M →* N) M N where + coe f := f.toFun + +instance AddMonoidHom.instFunLike : FunLike (A →+ B) A B where + coe f := f.toFun + +def MonoidHomClass.toMonoidHom [FunLike F M N] [MonoidHomClass F M N] (f : F) : M →* N := + { (f : M →ₙ* N), (f : OneHom M N) with } + +def AddMonoidHomClass.toAddMonoidHom [FunLike F A B] [AddMonoidHomClass F A B] (f : F) : A →+ B := + { (f : AddHom A B), (f : ZeroHom A B) with } + +instance [FunLike F M N] [MonoidHomClass F M N] : CoeTC F (M →* N) := + ⟨MonoidHomClass.toMonoidHom⟩ + +instance [FunLike F A B] [AddMonoidHomClass F A B] : CoeTC F (A →+ B) := + ⟨AddMonoidHomClass.toAddMonoidHom⟩ + +variable {M N P : Type _} + +def MulHom.comp [Mul M] [Mul N] [Mul P] (hnp : N →ₙ* P) (hmn : M →ₙ* N) : M →ₙ* P where + toFun := hnp ∘ hmn + map_mul' x y := sorry + +def MonoidHom.comp [MulOneClass M] [MulOneClass N] [MulOneClass P] (hnp : N →* P) (hmn : M →* N) : + M →* P where + toFun := hnp ∘ hmn + map_one' := sorry + map_mul' := sorry + +def AddHom.comp [Add M] [Add N] [Add P] (hnp : AddHom N P) (hmn : AddHom M N) : AddHom M P where + toFun := hnp ∘ hmn + map_add' x y := sorry + +def AddMonoidHom.comp [AddZeroClass M] [AddZeroClass N] [AddZeroClass P] (hnp : N →+ P) (hmn : M →+ N) : + M →+ P where + toFun := hnp ∘ hmn + map_zero' := sorry + map_add' := sorry + +end Mathlib.Algebra.Group.Hom.Defs + +section Mathlib.Algebra.Group.Equiv.Basic + +structure AddEquiv (A B : Type _) [Add A] [Add B] extends A ≃ B, AddHom A B +structure MulEquiv (M N : Type _) [Mul M] [Mul N] extends M ≃ N, M →ₙ* N + +infixl:25 " ≃* " => MulEquiv +infixl:25 " ≃+ " => AddEquiv + +def AddEquiv.symm {M N : Type _} [Add M] [Add N] (h : M ≃+ N) : N ≃+ M := + ⟨h.toEquiv.symm, sorry⟩ + +def MulEquiv.symm {M N : Type _} [Mul M] [Mul N] (h : M ≃* N) : N ≃* M := + ⟨h.toEquiv.symm, sorry⟩ + +end Mathlib.Algebra.Group.Equiv.Basic + +section Mathlib.Algebra.GroupWithZero.Hom + +variable {F α β γ δ : Type _} [MulZeroOneClass α] [MulZeroOneClass β] [MulZeroOneClass γ] + [MulZeroOneClass δ] + +class MonoidWithZeroHomClass (F : Type _) (α β : outParam (Type _)) [MulZeroOneClass α] + [MulZeroOneClass β] [FunLike F α β] extends MonoidHomClass F α β, ZeroHomClass F α β : Prop + +structure MonoidWithZeroHom (α β : Type _) [MulZeroOneClass α] [MulZeroOneClass β] + extends ZeroHom α β, MonoidHom α β + +/-- `α →*₀ β` denotes the type of zero-preserving monoid homomorphisms from `α` to `β`. -/ +infixr:25 " →*₀ " => MonoidWithZeroHom + +end Mathlib.Algebra.GroupWithZero.Hom + +section Mathlib.Data.Int.Cast.Defs + +protected def Nat.unaryCast {R : Type _} [One R] [Zero R] [Add R] : Nat → R + | 0 => 0 + | n + 1 => Nat.unaryCast n + 1 + +class AddMonoidWithOne (R : Type _) extends NatCast R, AddMonoid R, One R where + natCast := Nat.unaryCast + natCast_zero : natCast 0 = 0 := by intros; rfl + natCast_succ : ∀ n, natCast (n + 1) = natCast n + 1 := by intros; rfl + +class AddCommMonoidWithOne (R : Type _) extends AddMonoidWithOne R, AddCommMonoid R + +protected def Int.castDef {R : Type _} [NatCast R] [Neg R] : Int → R + | (n : Nat) => n + | Int.negSucc n => -(n + 1 : Nat) + +class AddGroupWithOne (R : Type _) extends IntCast R, AddMonoidWithOne R, AddGroup R where + intCast := Int.castDef + intCast_ofNat : ∀ n : Nat, intCast (n : Nat) = Nat.cast n := by intros; rfl + intCast_negSucc : ∀ n : Nat, intCast (Int.negSucc n) = - Nat.cast (n + 1) := by intros; rfl + +class AddCommGroupWithOne (R : Type _) + extends AddCommGroup R, AddGroupWithOne R, AddCommMonoidWithOne R + +end Mathlib.Data.Int.Cast.Defs + +section Mathlib.Algebra.Ring.Defs + +universe u x + +variable {α : Type u} {R : Type x} + +class Distrib (R : Type _) extends Mul R, Add R where + +class NonUnitalNonAssocSemiring (α : Type u) extends AddCommMonoid α, Distrib α, MulZeroClass α + +class NonUnitalSemiring (α : Type u) extends NonUnitalNonAssocSemiring α, SemigroupWithZero α + +class NonAssocSemiring (α : Type u) extends NonUnitalNonAssocSemiring α, MulZeroOneClass α, + AddCommMonoidWithOne α + +class NonUnitalNonAssocRing (α : Type u) extends AddCommGroup α, NonUnitalNonAssocSemiring α + +class NonAssocRing (α : Type _) extends NonUnitalNonAssocRing α, NonAssocSemiring α, + AddCommGroupWithOne α + +class Semiring (α : Type u) extends NonUnitalSemiring α, NonAssocSemiring α, MonoidWithZero α + +class Ring (R : Type u) extends Semiring R, AddCommGroup R, AddGroupWithOne R + +end Mathlib.Algebra.Ring.Defs + +section Mathlib.Algebra.Ring.Hom.Defs + +open Function + +variable {F α β γ : Type _} + +structure NonUnitalRingHom (α β : Type _) [NonUnitalNonAssocSemiring α] + [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β + +infixr:25 " →ₙ+* " => NonUnitalRingHom + +namespace NonUnitalRingHom + +variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalNonAssocSemiring γ] + +def comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : α →ₙ+* γ := + { g.toMulHom.comp f.toMulHom, g.toAddMonoidHom.comp f.toAddMonoidHom with } + +end NonUnitalRingHom + +structure RingHom (α : Type _) (β : Type _) [NonAssocSemiring α] [NonAssocSemiring β] extends + α →* β, α →+ β, α →ₙ+* β, α →*₀ β + +infixr:25 " →+* " => RingHom + +section RingHomClass + +class RingHomClass (F : Type _) (α β : outParam (Type _)) + [NonAssocSemiring α] [NonAssocSemiring β] [FunLike F α β] + extends MonoidHomClass F α β, AddMonoidHomClass F α β, MonoidWithZeroHomClass F α β : Prop + +variable [FunLike F α β] + +variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} [RingHomClass F α β] + +def RingHomClass.toRingHom (f : F) : α →+* β := + { (f : α →* β), (f : α →+ β) with } + +instance : CoeTC F (α →+* β) := + ⟨RingHomClass.toRingHom⟩ + +end RingHomClass + +namespace RingHom + +section coe + +variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} + +instance instFunLike : FunLike (α →+* β) α β where + coe f := f.toFun + +instance instRingHomClass : RingHomClass (α →+* β) α β where + map_add := sorry + map_zero := sorry + map_mul f := sorry + map_one f := sorry + +end coe + +variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} {_ : NonAssocSemiring γ} + +def comp (g : β →+* γ) (f : α →+* β) : α →+* γ := + { g.toNonUnitalRingHom.comp f.toNonUnitalRingHom with + toFun := g ∘ f + map_one' := sorry } + +end RingHom + + +end Mathlib.Algebra.Ring.Hom.Defs + + +section Mathlib.Algebra.Group.InjSurj +namespace Function + +namespace Injective + +variable {M₁ : Type _} {M₂ : Type _} [Mul M₁] + +protected def semigroup [Semigroup M₂] (f : M₁ → M₂) (hf : Injective f) : Semigroup M₁ := + { ‹Mul M₁› with mul_assoc := sorry } + +protected def addSemigroup {M₁} [Add M₁] [AddSemigroup M₂] (f : M₁ → M₂) (hf : Injective f) : AddSemigroup M₁ := + { ‹Add M₁› with add_assoc := sorry } + +protected def commMagma [CommMagma M₂] (f : M₁ → M₂) (hf : Injective f) : CommMagma M₁ where + mul_comm x y := sorry + +protected def addCommMagma {M₁} [Add M₁] [AddCommMagma M₂] (f : M₁ → M₂) (hf : Injective f) : AddCommMagma M₁ where + add_comm x y := sorry + +protected def commSemigroup [CommSemigroup M₂] (f : M₁ → M₂) (hf : Injective f) : CommSemigroup M₁ where + toSemigroup := hf.semigroup f + __ := hf.commMagma f + +protected def addCommSemigroup {M₁} [Add M₁] [AddCommSemigroup M₂] (f : M₁ → M₂) (hf : Injective f) : AddCommSemigroup M₁ where + toAddSemigroup := hf.addSemigroup f + __ := hf.addCommMagma f + +variable [One M₁] + +protected def mulOneClass [MulOneClass M₂] (f : M₁ → M₂) (hf : Injective f) : MulOneClass M₁ := + { ‹One M₁›, ‹Mul M₁› with + one_mul := sorry, + mul_one := sorry } + +protected def addZeroClass {M₁} [Zero M₁] [Add M₁] [AddZeroClass M₂] (f : M₁ → M₂) (hf : Injective f) : AddZeroClass M₁ := + { ‹Zero M₁›, ‹Add M₁› with + zero_add := sorry, + add_zero := sorry } + +variable [Pow M₁ Nat] + +protected def monoid [Monoid M₂] (f : M₁ → M₂) (hf : Injective f) : Monoid M₁ := + { hf.mulOneClass f, hf.semigroup f with + npow := fun n x => x ^ n, + npow_zero := sorry, + npow_succ := sorry } + +protected def addMonoid {M₁} [Zero M₁] [Add M₁] [SMul Nat M₁] [AddMonoid M₂] (f : M₁ → M₂) (hf : Injective f) : AddMonoid M₁ := + { hf.addZeroClass f, hf.addSemigroup f with + nsmul := fun n x => n • x, + nsmul_zero := sorry, + nsmul_succ := sorry } + +protected def addMonoidWithOne {M₁} [Zero M₁] [One M₁] [Add M₁] [SMul Nat M₁] [NatCast M₁] + [AddMonoidWithOne M₂] (f : M₁ → M₂) (hf : Injective f) : AddMonoidWithOne M₁ := + { hf.addMonoid f with + natCast := Nat.cast, + natCast_zero := sorry, + natCast_succ := sorry, + one := 1 } + +protected def commMonoid [CommMonoid M₂] (f : M₁ → M₂) (hf : Injective f) : + CommMonoid M₁ := + { hf.monoid f, hf.commSemigroup f with } + +protected def addCommMonoid {M₁} [Zero M₁] [Add M₁] [SMul Nat M₁] [AddCommMonoid M₂] (f : M₁ → M₂) (hf : Injective f) : + AddCommMonoid M₁ := + { hf.addMonoid f, hf.addCommSemigroup f with } + +variable [Inv M₁] [Div M₁] [Pow M₁ Int] + +protected def divInvMonoid [DivInvMonoid M₂] (f : M₁ → M₂) (hf : Injective f) : DivInvMonoid M₁ := + { hf.monoid f, ‹Inv M₁›, ‹Div M₁› with + zpow := fun n x => x ^ n, + zpow_zero' := sorry, + zpow_succ' := sorry, + zpow_neg' := sorry, + div_eq_mul_inv := sorry } + +protected def subNegMonoid {M₁} [Zero M₁] [One M₁] [Add M₁] [SMul Nat M₁] [Neg M₁] [Sub M₁] + [SMul Int M₁] [SubNegMonoid M₂] (f : M₁ → M₂) (hf : Injective f) : SubNegMonoid M₁ := + { hf.addMonoid f, ‹Neg M₁›, ‹Sub M₁› with + zsmul := fun n x => n • x, + zsmul_zero' := sorry, + zsmul_succ' := sorry, + zsmul_neg' := sorry, + sub_eq_add_neg := sorry } + +protected def group [Group M₂] (f : M₁ → M₂) (hf : Injective f) : Group M₁ := + { hf.divInvMonoid f with + mul_left_inv := sorry } + +protected def addGroup {M₁} [Zero M₁] [One M₁] [Add M₁] [SMul Nat M₁] [Neg M₁] [Sub M₁] + [SMul Int M₁] [AddGroup M₂] (f : M₁ → M₂) (hf : Injective f) : AddGroup M₁ := + { hf.subNegMonoid f with + add_left_neg := sorry } + +protected def addGroupWithOne {M₁} [Zero M₁] [One M₁] [Add M₁] [SMul Nat M₁] [Neg M₁] [Sub M₁] + [SMul Int M₁] [NatCast M₁] [IntCast M₁] [AddGroupWithOne M₂] (f : M₁ → M₂) (hf : Injective f) : AddGroupWithOne M₁ := + { hf.addGroup f, + hf.addMonoidWithOne f with + intCast := Int.cast, + intCast_ofNat := sorry, + intCast_negSucc := sorry } + +protected def commGroup [CommGroup M₂] (f : M₁ → M₂) (hf : Injective f) : CommGroup M₁ := + { hf.commMonoid f, hf.group f with } + +protected def addCommGroup {M₁} [Zero M₁] [One M₁] [Add M₁] [SMul Nat M₁] [Neg M₁] [Sub M₁] + [SMul Int M₁] [AddCommGroup M₂] (f : M₁ → M₂) (hf : Injective f) : AddCommGroup M₁ := + { hf.addCommMonoid f, hf.addGroup f with } + +end Injective + +end Function + + +end Mathlib.Algebra.Group.InjSurj + +section Mathlib.Algebra.GroupWithZero.InjSurj + +variable {M₀ G₀ M₀' G₀' : Type _} + +section MulZeroClass + +variable [MulZeroClass M₀] {a b : M₀} + +protected def Function.Injective.mulZeroClass [Mul M₀'] [Zero M₀'] (f : M₀' → M₀) (hf : Injective f) : MulZeroClass M₀' where + mul := (· * ·) + zero := 0 + zero_mul a := sorry + mul_zero a := sorry + +end MulZeroClass + +section MulZeroOneClass + +variable [MulZeroOneClass M₀] + +protected def Function.Injective.mulZeroOneClass [Mul M₀'] [Zero M₀'] [One M₀'] (f : M₀' → M₀) + (hf : Injective f) : + MulZeroOneClass M₀' := + { hf.mulZeroClass f, hf.mulOneClass f with } + +end MulZeroOneClass + +section SemigroupWithZero + +protected def Function.Injective.semigroupWithZero [Zero M₀'] [Mul M₀'] [SemigroupWithZero M₀] + (f : M₀' → M₀) (hf : Injective f) : + SemigroupWithZero M₀' := + { hf.mulZeroClass f, ‹Zero M₀'›, hf.semigroup f with } + +end SemigroupWithZero + +section MonoidWithZero + +protected def Function.Injective.monoidWithZero [Zero M₀'] [Mul M₀'] [One M₀'] [Pow M₀' Nat] + [MonoidWithZero M₀] (f : M₀' → M₀) (hf : Injective f) : + MonoidWithZero M₀' := + { hf.monoid f, hf.mulZeroClass f with } + +end MonoidWithZero + +section GroupWithZero + +variable [GroupWithZero G₀] {a b c g h x : G₀} + +protected def Function.Injective.groupWithZero [Zero G₀'] [Mul G₀'] [One G₀'] [Inv G₀'] [Div G₀'] + [Pow G₀' Nat] [Pow G₀' Int] (f : G₀' → G₀) (hf : Injective f) : GroupWithZero G₀' := + { hf.monoidWithZero f, + hf.divInvMonoid f with + inv_zero := sorry, + mul_inv_cancel := sorry } + +end GroupWithZero + + + +end Mathlib.Algebra.GroupWithZero.InjSurj + +section Mathlib.Algebra.Ring.InjSurj + +universe u v x + +variable {α : Type u} {β : Type v} {R : Type x} + +protected def Function.Injective.distrib {S} [Mul R] [Add R] [Distrib S] (f : R → S) + (hf : Injective f) : + Distrib R where + mul := (· * ·) + add := (· + ·) + +variable [Zero β] [One β] [Add β] [Mul β] [Neg β] [Sub β] [SMul Nat β] [SMul Int β] [Pow β Nat] + [NatCast β] [IntCast β] + +protected def Function.Injective.nonUnitalNonAssocSemiring {α : Type u} + [NonUnitalNonAssocSemiring α] (f : β → α) (hf : Injective f) : NonUnitalNonAssocSemiring β where + toAddCommMonoid := hf.addCommMonoid f + __ := hf.distrib f + __ := hf.mulZeroClass f + +protected def Function.Injective.nonUnitalSemiring {α : Type u} [NonUnitalSemiring α] (f : β → α) + (hf : Injective f) : + NonUnitalSemiring β where + toNonUnitalNonAssocSemiring := hf.nonUnitalNonAssocSemiring f + __ := hf.semigroupWithZero f + +protected def Function.Injective.nonAssocSemiring {α : Type u} [NonAssocSemiring α] [NatCast β] (f : β → α) (hf : Injective f) : NonAssocSemiring β where + toNonUnitalNonAssocSemiring := hf.nonUnitalNonAssocSemiring f + __ := hf.mulZeroOneClass f + __ := hf.addMonoidWithOne f + +protected def Function.Injective.semiring {α : Type u} [Semiring α] [NatCast β] (f : β → α) (hf : Injective f) : Semiring β where + toNonUnitalSemiring := hf.nonUnitalSemiring f + __ := hf.nonAssocSemiring f + __ := hf.monoidWithZero f + +protected def Function.Injective.ring [Ring α] (f : β → α) (hf : Injective f) : Ring β where + toSemiring := hf.semiring f + __ := hf.addGroupWithOne f + __ := hf.addCommGroup f + +end Mathlib.Algebra.Ring.InjSurj + +section Mathlib.GroupTheory.GroupAction.Defs + +variable {M α : Type _} + +instance (priority := 910) Mul.toSMul (α : Type _) [Mul α] : SMul α α := + ⟨(· * ·)⟩ + +class MulAction (α : Type _) (β : Type _) [Monoid α] extends SMul α β where + +class IsScalarTower (M N α : Type _) [SMul M N] [SMul N α] [SMul M α] : Prop + +instance IsScalarTower.left [Monoid M] [MulAction M α] : IsScalarTower M M α := sorry + +namespace SMul + +variable {N} [SMul M α] + +def comp.smul (g : N → M) (n : N) (a : α) : α := + g n • a + +variable (α) + +def comp (g : N → M) : SMul N α where smul := SMul.comp.smul g + +end SMul + +end Mathlib.GroupTheory.GroupAction.Defs + +section Mathlib.GroupTheory.Subsemigroup.Basic + +variable {M : Type _} {A : Type _} + +variable [Mul M] +variable [Add A] + +structure Subsemigroup (M : Type _) [Mul M] where + carrier : Set M + +structure AddSubsemigroup (M : Type _) [Add M] where + carrier : Set M + +end Mathlib.GroupTheory.Subsemigroup.Basic + +section Mathlib.GroupTheory.Submonoid.Basic + +variable {M : Type _} {A : Type _} + +variable [MulOneClass M] {s : Set M} +variable [AddZeroClass A] {t : Set A} + +structure Submonoid (M : Type _) [MulOneClass M] extends Subsemigroup M + +class SubmonoidClass (S : Type _) (M : Type _) [MulOneClass M] [SetLike S M] : Prop + +structure AddSubmonoid (M : Type _) [AddZeroClass M] extends AddSubsemigroup M + +class AddSubmonoidClass (S : Type _) (M : Type _) [AddZeroClass M] [SetLike S M] : Prop + +namespace Submonoid + +instance : SetLike (Submonoid M) M where + coe s := s.carrier + +instance : SubmonoidClass (Submonoid M) M where + +protected def copy (S : Submonoid M) (s : Set M) (hs : s = S) : Submonoid M where + carrier := s + +variable {S : Submonoid M} + +instance : Top (Submonoid M) := + ⟨{ carrier := Set.univ }⟩ + +instance : InfSet (Submonoid M) := + ⟨fun s => + { carrier := Set.iInter fun t => Set.iInter fun _ : t ∈ s => ↑t }⟩ + +end Submonoid + +namespace AddSubmonoid + +instance : SetLike (AddSubmonoid A) A where + coe s := s.carrier + +instance : AddSubmonoidClass (AddSubmonoid A) A where + +protected def copy (S : AddSubmonoid A) (s : Set A) (hs : s = S) : AddSubmonoid A where + carrier := s + +variable {S : AddSubmonoid A} + +instance : Top (AddSubmonoid A) := + ⟨{ carrier := Set.univ }⟩ + +instance : InfSet (AddSubmonoid A) := + ⟨fun s => + { carrier := Set.iInter fun t => Set.iInter fun _ : t ∈ s => ↑t }⟩ + +end AddSubmonoid + +end Mathlib.GroupTheory.Submonoid.Basic + +section Mathlib.GroupTheory.Subsemigroup.Operations + +variable {M : Type _} + +namespace MulMemClass + +variable {A : Type _} [Mul M] [SetLike A M] (S' : A) + +instance (priority := 900) mul : Mul S' := + ⟨fun a b => ⟨a.1 * b.1, sorry⟩⟩ + +end MulMemClass + +namespace AddMemClass + +variable {A : Type _} [Add M] [SetLike A M] (S' : A) + +instance (priority := 900) add : Add S' := + ⟨fun a b => ⟨a.1 + b.1, sorry⟩⟩ + +end AddMemClass + +end Mathlib.GroupTheory.Subsemigroup.Operations + +section Mathlib.GroupTheory.Submonoid.Operations + +variable {M N : Type _} [MulOneClass M] [MulOneClass N] (S : Submonoid M) +variable {A B : Type _} [AddZeroClass A] [AddZeroClass B] (T : AddSubmonoid A) +namespace Submonoid + +variable {F : Type _} [FunLike F M N] + +def map (f : F) (S : Submonoid M) : Submonoid N where + carrier := f '' S + +end Submonoid + +namespace AddSubmonoid + +variable {F : Type _} [FunLike F A B] + +def map (f : F) (S : AddSubmonoid A) : AddSubmonoid B where + carrier := f '' S + +end AddSubmonoid +namespace OneMemClass + +variable {A M₁ : Type _} [SetLike A M₁] [One M₁] (S' : A) + +instance one : One S' := + ⟨⟨1, sorry⟩⟩ + +end OneMemClass + +namespace ZeroMemClass + +variable {A M₁ : Type _} [SetLike A M₁] [Zero M₁] (S' : A) + +instance zero : Zero S' := + ⟨⟨0, sorry⟩⟩ + +end ZeroMemClass + +namespace SubmonoidClass + +instance nPow {M} [Monoid M] {A : Type _} [SetLike A M] [SubmonoidClass A M] (S : A) : Pow S Nat := + ⟨fun a n => ⟨a.1 ^ n, sorry⟩⟩ + +instance (priority := 75) toMulOneClass {M : Type _} [MulOneClass M] {A : Type _} [SetLike A M] + [SubmonoidClass A M] (S : A) : MulOneClass S := + Subtype.coe_injective.mulOneClass (fun x : S => (x : M)) + +instance (priority := 75) toMonoid {M : Type _} [Monoid M] {A : Type _} [SetLike A M] + [SubmonoidClass A M] (S : A) : Monoid S := + Subtype.coe_injective.monoid (fun x : S => (x : M)) + +end SubmonoidClass + +namespace AddSubmonoidClass + +instance nSMul {M} [AddMonoid M] {A : Type _} [SetLike A M] + [AddSubmonoidClass A M] (S : A) : SMul Nat S := + ⟨fun n a => ⟨n • a.1, sorry⟩⟩ + +instance (priority := 75) toAddZeroClass {M : Type _} [AddZeroClass M] {A : Type _} [SetLike A M] + [AddSubmonoidClass A M] (S : A) : AddZeroClass S := + Subtype.coe_injective.addZeroClass (fun x : S => (x : M)) + +instance (priority := 75) toAddMonoid {M : Type _} [AddMonoid M] {A : Type _} [SetLike A M] + [AddSubmonoidClass A M] (S : A) : AddMonoid S := + Subtype.coe_injective.addMonoid (fun x : S => (x : M)) + +end AddSubmonoidClass + +namespace Submonoid + +instance toMonoid {M : Type _} [Monoid M] (S : Submonoid M) : Monoid S := + Subtype.coe_injective.monoid (fun x : S => (x : M)) + +def subtype : S →* M where + toFun := Subtype.val + map_one' := sorry + map_mul' _ _ := sorry + +instance smul {M' α : Type _} [MulOneClass M'] [SMul M' α] (S : Submonoid M') : SMul S α := + SMul.comp _ S.subtype + +end Submonoid + +namespace AddSubmonoid + +def subtype : T →+ A where + toFun := Subtype.val + map_zero' := sorry + map_add' _ _ := sorry + +end AddSubmonoid + +namespace MonoidHom + +def codRestrict {S} [SetLike S N] [SubmonoidClass S N] (f : M →* N) (s : S) (h : ∀ x, f x ∈ s) : + M →* s where + toFun n := ⟨f n, h n⟩ + map_one' := sorry + map_mul' x y := sorry + +end MonoidHom + +namespace AddMonoidHom + +def codRestrict {T} [SetLike T B] [AddSubmonoidClass T B] (f : A →+ B) (t : T) (h : ∀ x, f x ∈ t) : + A →+ t where + toFun n := ⟨f n, h n⟩ + map_zero' := sorry + map_add' x y := sorry + +end AddMonoidHom + +end Mathlib.GroupTheory.Submonoid.Operations + +section Mathlib.GroupTheory.Subgroup.Basic + +variable {G : Type _} [Group G] +variable {A : Type _} [AddGroup A] + + +instance inv {G : Type _} {S : Type _} [Inv G] [SetLike S G] + {H : S} : Inv H := + ⟨fun a => ⟨a⁻¹, sorry⟩⟩ + +instance neg {A : Type _} {S : Type _} [Neg A] [SetLike S A] + {H : S} : Neg H := + ⟨fun a => ⟨- a, sorry⟩⟩ + +instance div {G : Type _} {S : Type _} [DivInvMonoid G] [SetLike S G] + {H : S} : Div H := + ⟨fun a b => ⟨a / b, sorry⟩⟩ + +instance sub {A : Type _} {S : Type _} [SubNegMonoid A] [SetLike S A] + {H : S} : Sub H := + ⟨fun a b => ⟨a - b, sorry⟩⟩ + +instance _root_.AddSubmonoidClass.zsmul {M S} [SubNegMonoid M] [SetLike S M] + {H : S} : SMul Int H := + ⟨fun n a => ⟨n • a.1, sorry⟩⟩ + +instance zpow {M S} [DivInvMonoid M] [SetLike S M] {H : S} : Pow H Int := + ⟨fun a n => ⟨a.1 ^ n, sorry⟩⟩ + +structure Subgroup (G : Type _) [Group G] extends Submonoid G where + +structure AddSubgroup (G : Type _) [AddGroup G] extends AddSubmonoid G where + +namespace Subgroup + +instance : SetLike (Subgroup G) G where + coe s := s.carrier + +variable (H K : Subgroup G) + +protected def copy (K : Subgroup G) (s : Set G) (hs : s = K) : Subgroup G where + carrier := s + +instance : Top (Subgroup G) := + ⟨{ (⊤ : Submonoid G) with }⟩ + +instance : InfSet (Subgroup G) := + ⟨fun s => + { (iInf fun S => iInf fun h : S ∈ s => Subgroup.toSubmonoid S).copy (Set.iInter fun S => Set.iInter fun _ : S ∈ s => ↑S) sorry with }⟩ + +instance : InfSet (Subgroup G) := + ⟨fun s => + { (iInf fun S => iInf fun h : S ∈ s => Subgroup.toSubmonoid S).copy (Set.iInter fun S => Set.iInter fun _ : S ∈ s => ↑S) sorry with }⟩ + +def map {N : Type _} [Group N] (f : G →* N) (H : Subgroup G) : Subgroup N := + { H.toSubmonoid.map f with + carrier := f '' H } + +end Subgroup + +namespace AddSubgroup + +instance : SetLike (AddSubgroup A) A where + coe s := s.carrier + +variable (H K : AddSubgroup A) + +protected def copy (K : AddSubgroup A) (s : Set A) (hs : s = K) : AddSubgroup A where + carrier := s + +instance : Top (AddSubgroup A) := + ⟨{ (⊤ : AddSubmonoid A) with }⟩ + +instance : InfSet (AddSubgroup A) := + ⟨fun s => + { (iInf fun S => iInf fun h : S ∈ s => AddSubgroup.toAddSubmonoid S).copy (Set.iInter fun S => Set.iInter fun _ : S ∈ s => ↑S) sorry with }⟩ + +instance : InfSet (AddSubgroup A) := + ⟨fun s => + { (iInf fun S => iInf fun h : S ∈ s => AddSubgroup.toAddSubmonoid S).copy (Set.iInter fun S => Set.iInter fun _ : S ∈ s => ↑S) sorry with }⟩ + +def map {N : Type _} [AddGroup N] (f : A →+ N) (H : AddSubgroup A) : AddSubgroup N := + { H.toAddSubmonoid.map f with + carrier := f '' H } + +end AddSubgroup + +end Mathlib.GroupTheory.Subgroup.Basic + +section Mathlib.Algebra.Field.Defs + +variable {K : Type _} + +class DivisionRing (α : Type _) extends Ring α, DivInvMonoid α where + protected mul_inv_cancel : ∀ (a : α), a ≠ 0 → a * a⁻¹ = 1 + protected inv_zero : (0 : α)⁻¹ = 0 + +class Semifield (K : Type _) extends Semiring K, GroupWithZero K + +class Field (K : Type _) extends Ring K, DivisionRing K + +instance (priority := 100) Field.toSemifield [Field K] : Semifield K := { ‹Field K› with } + +end Mathlib.Algebra.Field.Defs + +section Mathlib.Algebra.Ring.Equiv + +variable {R S : Type _} + +structure RingEquiv (R S : Type _) [Mul R] [Mul S] [Add R] [Add S] extends R ≃ S, R ≃* S, R ≃+ S + +infixl:25 " ≃+* " => RingEquiv + +namespace RingEquiv + +variable [Mul R] [Mul S] [Add R] [Add S] + +@[symm] +protected def symm (e : R ≃+* S) : S ≃+* R := + { e.toMulEquiv.symm, e.toAddEquiv.symm with } + +end RingEquiv + +end Mathlib.Algebra.Ring.Equiv + +section Mathlib.Algebra.Field.Basic + +@[reducible] +protected def Function.Injective.field {K : Type _} [Field K] {K'} [Zero K'] [Mul K'] [Add K'] [Neg K'] [Sub K'] + [One K'] [Inv K'] [Div K'] [SMul Nat K'] [SMul Int K'] [Pow K' Nat] [Pow K' Int] + [NatCast K'] [IntCast K'] (f : K' → K) (hf : Injective f) : + Field K' := + { hf.groupWithZero f, + hf.ring f with } + +protected theorem RingHom.injective {α β : Type _} [DivisionRing α] [Semiring β] (f : α →+* β) : + Function.Injective f := sorry + +end Mathlib.Algebra.Field.Basic + +section Mathlib.RingTheory.Subsemiring.Basic + +universe u v w + +section AddSubmonoidWithOneClass + +class AddSubmonoidWithOneClass (S R : Type _) [AddMonoidWithOne R] + [SetLike S R] extends AddSubmonoidClass S R : Prop + +variable {S R : Type _} [AddMonoidWithOne R] [SetLike S R] (s : S) + +instance (priority := 74) AddSubmonoidWithOneClass.toAddMonoidWithOne + [AddSubmonoidWithOneClass S R] : AddMonoidWithOne s := + { AddSubmonoidClass.toAddMonoid s with + one := ⟨1, sorry⟩ + natCast := fun n => ⟨n, sorry⟩ + natCast_zero := sorry + natCast_succ := sorry } + +end AddSubmonoidWithOneClass + +variable {R : Type u} {S : Type v} [NonAssocSemiring R] + +section SubsemiringClass + +class SubsemiringClass (S : Type _) (R : Type u) [NonAssocSemiring R] + [SetLike S R] extends SubmonoidClass S R, AddSubmonoidClass S R : Prop + +instance (priority := 100) SubsemiringClass.addSubmonoidWithOneClass (S : Type _) + (R : Type u) [NonAssocSemiring R] [SetLike S R] [h : SubsemiringClass S R] : + AddSubmonoidWithOneClass S R := + { h with } + +variable [SetLike S R] [hSR : SubsemiringClass S R] (s : S) + +namespace SubsemiringClass + +instance (priority := 75) toNonAssocSemiring : NonAssocSemiring s := + Subtype.coe_injective.nonAssocSemiring (fun x : s => (x : R)) + +instance toSemiring {R} [Semiring R] [SetLike S R] [SubsemiringClass S R] : + Semiring s := + Subtype.coe_injective.semiring (fun x : s => (x : R)) + +end SubsemiringClass + +end SubsemiringClass + +structure Subsemiring (R : Type u) [NonAssocSemiring R] extends Submonoid R, AddSubmonoid R + +namespace Subsemiring + +instance : SetLike (Subsemiring R) R where + coe s := s.carrier + +instance : SubsemiringClass (Subsemiring R) R where + +protected def copy (S : Subsemiring R) (s : Set R) (hs : s = ↑S) : Subsemiring R := + { S.toAddSubmonoid.copy s hs, S.toSubmonoid.copy s hs with carrier := s } + +end Subsemiring + +namespace Subsemiring + +variable (s : Subsemiring R) + +instance toNonAssocSemiring : NonAssocSemiring s := + SubsemiringClass.toNonAssocSemiring _ + +instance toSemiring {R} [Semiring R] (s : Subsemiring R) : Semiring s := + { s.toNonAssocSemiring, s.toSubmonoid.toMonoid with } + +def subtype : s →+* R := + { s.toSubmonoid.subtype, s.toAddSubmonoid.subtype with + toFun := fun x : s => (x : R) } + +instance : Top (Subsemiring R) := + ⟨{ (⊤ : Submonoid R), (⊤ : AddSubmonoid R) with }⟩ + +def map [NonAssocSemiring S] (f : R →+* S) (s : Subsemiring R) : Subsemiring S := + { s.toSubmonoid.map (f : R →* S), s.toAddSubmonoid.map (f : R →+ S) with carrier := f '' s } + +end Subsemiring + +def RingHom.rangeS [NonAssocSemiring S] (f : R →+* S) : Subsemiring S := + ((⊤ : Subsemiring R).map f).copy (Set.range f) sorry + +def RingHom.codRestrict {σS} [NonAssocSemiring S] [SetLike σS S] [SubsemiringClass σS S] (f : R →+* S) (s : σS) (h : ∀ x, f x ∈ s) : R →+* s := + { (f : R →* S).codRestrict s h, (f : R →+ S).codRestrict s h with toFun := fun n => ⟨f n, h n⟩ } + +end Mathlib.RingTheory.Subsemiring.Basic + +section Mathlib.RingTheory.Subring.Basic + +universe u v w + +variable {R : Type u} {S : Type v} {T : Type w} [Ring R] + +section SubringClass + +class SubringClass (S : Type _) (R : Type u) [Ring R] [SetLike S R] extends + SubsemiringClass S R : Prop + +instance (priority := 100) SubringClass.addSubmonoidClass (S : Type _) (R : Type u) + [SetLike S R] [Ring R] [h : SubringClass S R] : AddSubmonoidClass S R := + { h with } + +variable [SetLike S R] [hSR : SubringClass S R] (s : S) + +instance (priority := 75) toHasIntCast : IntCast s := + ⟨fun n => ⟨n, sorry⟩⟩ + +end SubringClass + +variable [Ring S] [Ring T] + +structure Subring (R : Type u) [Ring R] extends Subsemiring R, AddSubgroup R + +namespace Subring + +instance : SetLike (Subring R) R where + coe s := s.carrier + +protected def copy (S : Subring R) (s : Set R) (hs : s = ↑S) : Subring R := + { S.toSubsemiring.copy s hs with + carrier := s } + +protected def mk' (s : Set R) (sm : Submonoid R) (sa : AddSubgroup R) : Subring R := + { sm.copy s sorry, sa.copy s sorry with } + +end Subring + +namespace Subring + +instance : Top (Subring R) := + ⟨{ (⊤ : Submonoid R), (⊤ : AddSubgroup R) with }⟩ + +def map {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) (s : Subring R) : Subring S := + { s.toSubmonoid.map (f : R →* S), s.toAddSubgroup.map (f : R →+ S) with + carrier := f '' s.carrier } + +end Subring + +instance : InfSet (Subring R) := + ⟨fun s => + Subring.mk' (Set.iInter fun t => Set.iInter fun _ : t ∈ s => ↑t) (iInf fun t => iInf fun _ : t ∈ s => t.toSubmonoid) (iInf fun t => iInf fun _ : t ∈ s => Subring.toAddSubgroup t)⟩ + +end Mathlib.RingTheory.Subring.Basic + +section Mathlib.Algebra.Algebra.Basic + +universe u v w + +class Algebra (R : Type u) (A : Type v) [Semiring R] [Semiring A] extends SMul R A, R →+* A + +def algebraMap (R : Type u) (A : Type v) [Semiring R] [Semiring A] [Algebra R A] : R →+* A := + Algebra.toRingHom + +namespace Algebra + +variable {R : Type u} {S : Type v} {A : Type w} {B : Type _} + +section Semiring + +variable [Semiring R] [Semiring S] +variable [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] + +instance (priority := 200) toMulAction : MulAction R A where + +instance _root_.IsScalarTower.right : IsScalarTower R A A := sorry + +instance id : Algebra R R where + toFun x := x + toSMul := Mul.toSMul _ + map_one' := sorry + map_mul' := sorry + map_zero' := sorry + map_add' := sorry + +instance ofSubsemiring (S : Subsemiring R) : Algebra S A where + toRingHom := (algebraMap R A).comp S.subtype + smul := (· • ·) + +end Semiring + +end Algebra + +end Mathlib.Algebra.Algebra.Basic + +section Mathlib.Algebra.Algebra.Hom + +universe u v w u₁ v₁ + +structure AlgHom (R : Type u) (A : Type v) (B : Type w) [Semiring R] [Semiring A] [Semiring B] + [Algebra R A] [Algebra R B] extends RingHom A B where + commutes' : ∀ r : R, toFun (algebraMap R A r) = algebraMap R B r + +infixr:25 " →ₐ " => AlgHom _ + +notation:25 A " →ₐ[" R "] " B => AlgHom R A B + +/-- `AlgHomClass F R A B` asserts `F` is a type of bundled algebra homomorphisms +from `A` to `B`. -/ +class AlgHomClass (F : Type _) (R A B : outParam (Type _)) + [Semiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] + [FunLike F A B] extends RingHomClass F A B : Prop where + commutes : ∀ (f : F) (r : R), f (algebraMap R A r) = algebraMap R B r + +namespace AlgHom + +variable {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} + +section Semiring + +variable [Semiring R] [Semiring A] [Semiring B] [Semiring C] +variable [Algebra R A] [Algebra R B] [Algebra R C] + +instance funLike : FunLike (A →ₐ[R] B) A B where + coe f := f.toFun + +instance algHomClass : AlgHomClass (A →ₐ[R] B) R A B where + map_add f := sorry + map_zero f := sorry + map_mul f := sorry + map_one f := sorry + commutes f := sorry + +@[ext] +theorem ext {φ₁ φ₂ : A →ₐ[R] B} (H : ∀ x, φ₁ x = φ₂ x) : φ₁ = φ₂ := sorry + +def comp (φ₁ : B →ₐ[R] C) (φ₂ : A →ₐ[R] B) : A →ₐ[R] C := + { φ₁.toRingHom.comp φ₂ with + commutes' := sorry } + +end Semiring + +end AlgHom + +end Mathlib.Algebra.Algebra.Hom + +-- import Mathlib.Order.SetNotation +-- import Mathlib.Data.Set.Image +-- import Mathlib.Data.SetLike.Basic +-- import Mathlib.Algebra.Ring.Hom.Basic +-- import Mathlib.Algebra.Ring.InjSurj +-- import Mathlib.GroupTheory.GroupAction.Defs +-- import Mathlib.GroupTheory.Subsemigroup.Basic +-- import Mathlib.GroupTheory.Submonoid.Basic +-- import Mathlib.GroupTheory.Subsemigroup.Operations +-- import Mathlib.GroupTheory.Submonoid.Operations +-- import Mathlib.GroupTheory.Subgroup.Basic +-- import Mathlib.Algebra.Field.Defs +-- import Mathlib.Algebra.Ring.Equiv +-- import Mathlib.Algebra.Field.Basic +-- import Mathlib.RingTheory.Subsemiring.Basic +-- import Mathlib.Algebra.Algebra.Basic +-- import Mathlib.Algebra.Algebra.Hom + +section Mathlib.Algebra.Algebra.Equiv + +universe u v w u₁ v₁ + +structure AlgEquiv (R : Type u) (A : Type v) (B : Type w) [Semiring R] [Semiring A] [Semiring B] + [Algebra R A] [Algebra R B] extends A ≃ B, A ≃+* B where + protected commutes' : ∀ r : R, toFun (algebraMap R A r) = algebraMap R B r + +notation:50 A " ≃ₐ[" R "] " A' => AlgEquiv R A A' + +namespace AlgEquiv + +universe uR uA₁ uA₂ uA₃ +variable {R : Type uR} +variable {A₁ : Type uA₁} {A₂ : Type uA₂} + +section Semiring + +variable [Semiring R] [Semiring A₁] [Semiring A₂] +variable [Algebra R A₁] [Algebra R A₂] +variable (e : A₁ ≃ₐ[R] A₂) + +instance : EquivLike (A₁ ≃ₐ[R] A₂) A₁ A₂ where + coe f := f.toFun + inv f := f.invFun + +instance : FunLike (A₁ ≃ₐ[R] A₂) A₁ A₂ where + coe := DFunLike.coe + +def toAlgHom : A₁ →ₐ[R] A₂ := + { e with + map_one' := sorry + map_zero' := sorry } + +def symm (e : A₁ ≃ₐ[R] A₂) : A₂ ≃ₐ[R] A₁ := + { e.toRingEquiv.symm with + commutes' := sorry } + +theorem symm_apply_apply (e : A₁ ≃ₐ[R] A₂) : ∀ x, e.symm (e x) = x := sorry + +end Semiring + +end AlgEquiv + + +end Mathlib.Algebra.Algebra.Equiv + + + +section Mathlib.Algebra.Algebra.Subalgebra.Basic + +universe u u' v w + +/-- A subalgebra is a sub(semi)ring that includes the range of `algebraMap`. -/ +structure Subalgebra (R : Type u) (A : Type v) [Semiring R] [Semiring A] [Algebra R A] extends + Subsemiring A : Type v where + +namespace Subalgebra + +variable {R' : Type u'} {R : Type u} {A : Type v} {B : Type w} +variable [Semiring R] +variable [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] + +instance : SetLike (Subalgebra R A) A where + coe s := s.carrier + +variable (S : Subalgebra R A) + +instance {R A : Type _} [Semiring R] [Semiring A] [Algebra R A] : SubsemiringClass (Subalgebra R A) A where + +instance (priority := 500) algebra' [Semiring R'] [SMul R' R] [Algebra R' A] + [IsScalarTower R' R A] : + Algebra R' S := + { (algebraMap R' A).codRestrict S sorry with + smul := fun r s => ⟨r • s, sorry⟩ } + +instance algebra : Algebra R S := S.algebra' + +def val : S →ₐ[R] A := + { toFun := fun x : S => (x : A) + map_zero' := sorry + map_one' := sorry + map_add' := sorry + map_mul' := sorry + commutes' := sorry } + +end Subalgebra + +namespace AlgHom + +variable {R : Type u} {A : Type v} {B : Type w} +variable [Semiring R] +variable [Semiring A] [Algebra R A] [Semiring B] [Algebra R B] +variable (φ : A →ₐ[R] B) + +/-- Range of an `AlgHom` as a subalgebra. -/ +protected def range (φ : A →ₐ[R] B) : Subalgebra R B := + { φ.toRingHom.rangeS with } + +def codRestrict (f : A →ₐ[R] B) (S : Subalgebra R B) (hf : ∀ x, f x ∈ S) : A →ₐ[R] S := + { RingHom.codRestrict (f : A →+* B) S hf with commutes' := sorry } + +@[reducible] +def rangeRestrict (f : A →ₐ[R] B) : A →ₐ[R] f.range := + f.codRestrict f.range sorry + +end AlgHom + +namespace AlgEquiv + +variable {R : Type u} +variable [Semiring R] +variable {A : Type v} {B : Type w} [Semiring A] + [Semiring B] [Algebra R A] [Algebra R B] + +def ofLeftInverse {g : B → A} {f : A →ₐ[R] B} (h : Function.LeftInverse g f) : A ≃ₐ[R] f.range := + { f.rangeRestrict with + toFun := f.rangeRestrict + invFun := g ∘ f.range.val } + +noncomputable def ofInjective (f : A →ₐ[R] B) (hf : Function.Injective f) : A ≃ₐ[R] f.range := + ofLeftInverse (Classical.choose_spec hf.hasLeftInverse) + +noncomputable def ofInjectiveField {E F : Type _} [DivisionRing E] [Semiring F] + [Algebra R E] [Algebra R F] (f : E →ₐ[R] F) : E ≃ₐ[R] f.range := ofInjective f f.toRingHom.injective + +end AlgEquiv + +namespace Subalgebra + +open Algebra + +variable {R : Type u} {A : Type v} +variable [Semiring R] [Semiring A] [Algebra R A] + +def inclusion {S T : Subalgebra R A} (h : S ≤ T) : S →ₐ[R] T where + toFun := Set.inclusion h + map_one' := sorry + map_add' _ _ := sorry + map_mul' _ _ := sorry + map_zero' := sorry + commutes' _ := sorry + +instance isScalarTower_mid {R S T : Type _} [Semiring R] [Semiring S] [AddMonoid T] + [Algebra R S] [MulAction R T] [MulAction S T] [IsScalarTower R S T] (S' : Subalgebra R S) : + IsScalarTower R S' T := sorry + +end Subalgebra + +end Mathlib.Algebra.Algebra.Subalgebra.Basic + +section Mathlib.Algebra.Algebra.Tower + +universe u v w + +variable (R : Type u) (S : Type v) (A : Type w) + +namespace IsScalarTower + +variable [Semiring R] [Semiring S] [Semiring A] +variable [Algebra R S] [Algebra S A] [Algebra R A] +variable [IsScalarTower R S A] + +def toAlgHom : S →ₐ[R] A := + { algebraMap S A with commutes' := sorry } + +end IsScalarTower + +end Mathlib.Algebra.Algebra.Tower + + +section Mathlib.Algebra.Algebra.Subalgebra.Tower + +universe u v w u₁ v₁ + +variable (R : Type u) (S : Type v) (A : Type w) (B : Type u₁) + +namespace Subalgebra + +open IsScalarTower + +variable {S A B} [Semiring R] [Semiring S] [Semiring A] +variable [Algebra R S] [Algebra S A] [Algebra R A] +variable [IsScalarTower R S A] + +def restrictScalars (U : Subalgebra S A) : Subalgebra R A := + { U with } + +end Subalgebra + +end Mathlib.Algebra.Algebra.Subalgebra.Tower + +section Mathlib.Data.Polynomial.Basic + +def Polynomial (R : Type _) [Semiring R] : Type _ := sorry + +end Mathlib.Data.Polynomial.Basic + + +section Mathlib.Data.Polynomial.Splits + +universe u v w + +variable {K : Type v} {L : Type w} +variable [Semiring K] [Semiring L] +variable (i : K →+* L) + +def Polynomial.Splits (f : Polynomial K) : Prop := sorry + +end Mathlib.Data.Polynomial.Splits + +section Mathlib.FieldTheory.Subfield + +universe u v w + +variable {K : Type u} {L : Type v} +variable [DivisionRing K] [DivisionRing L] + +/-- `SubfieldClass S K` states `S` is a type of subsets `s ⊆ K` closed under field operations. -/ +class SubfieldClass (S K : Type _) [DivisionRing K] [SetLike S K] extends SubringClass S K : Prop + +namespace SubfieldClass + +variable (S : Type _) [SetLike S K] [h : SubfieldClass S K] + +instance (priority := 75) toField {K} [Field K] [SetLike S K] [SubfieldClass S K] (s : S) : + Field s := + Subtype.coe_injective.field fun x : s => (x : K) + +end SubfieldClass + +structure Subfield (K : Type u) [Ring K] extends Subring K where + +namespace Subfield + +instance : SetLike (Subfield K) K where + coe s := s.carrier + +instance : SubfieldClass (Subfield K) K where + +protected def copy (S : Subfield K) (s : Set K) (hs : s = ↑S) : Subfield K := + { S.toSubring.copy s hs with + carrier := s } + +/-- The subfield of `K` containing all elements of `K`. -/ +instance : Top (Subfield K) := + ⟨{ (⊤ : Subring K) with }⟩ + +def map (f : K →+* L) (s : Subfield K) : Subfield L := + { s.toSubring.map f with} + +end Subfield + +def RingHom.fieldRange (f : K →+* L) : Subfield L := + ((⊤ : Subfield K).map f).copy (Set.range f) sorry + +namespace Subfield + +instance : InfSet (Subfield K) := + ⟨fun S => { InfSet.sInf (Subfield.toSubring '' S) with }⟩ + +def closure (s : Set K) : Subfield K := InfSet.sInf (setOf fun S => s ⊆ S) + +end Subfield + +end Mathlib.FieldTheory.Subfield + + + +section Mathlib.FieldTheory.IntermediateField + +variable (K L L' : Type _) [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] + +structure IntermediateField extends Subalgebra K L where + inv_mem' : ∀ x ∈ carrier, x⁻¹ ∈ carrier + +variable {K L L'} +variable (S : IntermediateField K L) + +namespace IntermediateField + +instance : SetLike (IntermediateField K L) L := + ⟨fun S => S.toSubalgebra.carrier⟩ + +def toSubfield : Subfield L := + { S.toSubalgebra with } + +instance : SubfieldClass (IntermediateField K L) L where + +instance isScalarTower {R} [Semiring R] [SMul R K] [SMul R L] [SMul R S] [IsScalarTower R K L] : + IsScalarTower R K S := sorry + +variable {E} [Field E] [Algebra L E] (T : IntermediateField S E) {S} +instance : Algebra S T := T.algebra +instance : SMul S T := Algebra.toSMul +instance [Algebra K E] [IsScalarTower K L E] : IsScalarTower K S T := T.isScalarTower + +end IntermediateField + +namespace AlgHom + +variable (f : L →ₐ[K] L') + +def fieldRange : IntermediateField K L' := + { f.range, (f : L →+* L').fieldRange with + inv_mem' := sorry } + +end AlgHom + +namespace IntermediateField + +def inclusion {E F : IntermediateField K L} (hEF : E ≤ F) : E →ₐ[K] F := + Subalgebra.inclusion hEF + +section RestrictScalars + +variable (K) +variable [Algebra L' L] [IsScalarTower K L' L] + +def restrictScalars (E : IntermediateField L' L) : IntermediateField K L := + { E.toSubfield, E.toSubalgebra.restrictScalars K with + carrier := E.carrier + inv_mem' := sorry } + +@[simp] +theorem coe_restrictScalars {E : IntermediateField L' L} : + (restrictScalars K E : Set L) = (E : Set L) := + rfl + +end RestrictScalars + +end IntermediateField + +end Mathlib.FieldTheory.IntermediateField + +section Mathlib.FieldTheory.Adjoin + +namespace IntermediateField + +section AdjoinDef + +variable (F : Type _) [Field F] {E : Type _} [Field E] [Algebra F E] (S : Set E) + +def adjoin : IntermediateField F E := + { Subfield.closure (Set.range (algebraMap F E) ∪ S) with + inv_mem' := sorry } + +theorem subset_adjoin : S ⊆ adjoin F S := sorry + +theorem subset_adjoin_of_subset_left {F : Subfield E} {T : Set E} (HT : T ⊆ F) : T ⊆ adjoin F S := + sorry + +theorem adjoin_subset_adjoin_iff {F' : Type _} [Field F'] [Algebra F' E] {S S' : Set E} : + (adjoin F S : Set E) ⊆ adjoin F' S' ↔ + Set.range (algebraMap F E) ⊆ adjoin F' S' ∧ S ⊆ adjoin F' S' := sorry + +end AdjoinDef + +end IntermediateField + +end Mathlib.FieldTheory.Adjoin + +section Mathlib.FieldTheory.Extension + +namespace IntermediateField + +variable {F E K : Type _} [Field F] [Field E] [Field K] [Algebra F E] [Algebra F K] {S : Set E} + +private theorem exists_algHom_adjoin_of_splits'' {L : IntermediateField F E} + (f : L →ₐ[F] K) : + ∃ φ : adjoin L S →ₐ[F] K, φ.comp (IsScalarTower.toAlgHom F L _) = f := by + sorry + +variable {L : Type _} [Field L] [Algebra F L] [Algebra L E] [IsScalarTower F L E] + (f : L →ₐ[F] K) + +-- This only required 16,000 heartbeats prior to #3807, and now takes ~210,000. +set_option maxHeartbeats 30000 +theorem exists_algHom_adjoin_of_splits''' : + ∃ φ : adjoin L S →ₐ[F] K, φ.comp (IsScalarTower.toAlgHom F L _) = f := by + let L' := (IsScalarTower.toAlgHom F L E).fieldRange + let f' : L' →ₐ[F] K := f.comp (AlgEquiv.ofInjectiveField _).symm.toAlgHom + have := exists_algHom_adjoin_of_splits'' f' (S := S) + · obtain ⟨φ, hφ⟩ := this + refine ⟨φ.comp <| + inclusion (?_ : (adjoin L S).restrictScalars F ≤ (adjoin L' S).restrictScalars F), ?_⟩ + · simp only [← SetLike.coe_subset_coe, coe_restrictScalars, adjoin_subset_adjoin_iff] + exact ⟨subset_adjoin_of_subset_left S (F := L'.toSubfield) le_rfl, subset_adjoin _ _⟩ + · ext x + set_option trace.Meta.isDefEq true in + exact (congrFun (congrArg (fun g : L' →ₐ[F] K => (g : L' → K)) hφ) _).trans (congrArg f <| AlgEquiv.symm_apply_apply _ _) + + +end IntermediateField + +end Mathlib.FieldTheory.Extension