diff --git a/Mathlib/Analysis/Analytic/IteratedFDeriv.lean b/Mathlib/Analysis/Analytic/IteratedFDeriv.lean index 6f163354d8dcf..fb338e555e96f 100644 --- a/Mathlib/Analysis/Analytic/IteratedFDeriv.lean +++ b/Mathlib/Analysis/Analytic/IteratedFDeriv.lean @@ -196,7 +196,7 @@ theorem HasFPowerSeriesWithinOnBall.iteratedFDerivWithin_eq_sum apply HasFPowerSeriesWithinOnBall.iteratedFDerivWithin_eq_sum_of_subset · exact h.mono inter_subset_left · exact h'.mono inter_subset_left - · exact hs.inter EMetric.isOpen_ball + · exact hs.inter_isOpen EMetric.isOpen_ball · exact ⟨hx, EMetric.mem_ball_self h.r_pos⟩ · exact inter_subset_right diff --git a/Mathlib/Analysis/Calculus/Taylor.lean b/Mathlib/Analysis/Calculus/Taylor.lean index 7288644378e31..c931cda76265f 100644 --- a/Mathlib/Analysis/Calculus/Taylor.lean +++ b/Mathlib/Analysis/Calculus/Taylor.lean @@ -305,8 +305,7 @@ theorem taylor_mean_remainder_bound {f : ℝ → E} {a b C x : ℝ} {n : ℕ} (h simp [hx] -- The nth iterated derivative is differentiable have hf' : DifferentiableOn ℝ (iteratedDerivWithin n f (Icc a b)) (Icc a b) := - hf.differentiableOn_iteratedDerivWithin (mod_cast n.lt_succ_self) - (uniqueDiffOn_Icc h) + hf.differentiableOn_iteratedDerivWithin (mod_cast n.lt_succ_self) (.Icc h) -- We can uniformly bound the derivative of the Taylor polynomial have h' : ∀ y ∈ Ico a x, ‖((n ! : ℝ)⁻¹ * (x - y) ^ n) • iteratedDerivWithin (n + 1) f (Icc a b) y‖ ≤ @@ -350,4 +349,4 @@ theorem exists_taylor_mean_remainder_bound {f : ℝ → E} {a b : ℝ} {n : ℕ} intro x hx rw [div_mul_eq_mul_div₀] refine taylor_mean_remainder_bound hab hf hx fun y => ?_ - exact (hf.continuousOn_iteratedDerivWithin rfl.le <| uniqueDiffOn_Icc h).norm.le_sSup_image_Icc + exact (hf.continuousOn_iteratedDerivWithin le_rfl <| .Icc h).norm.le_sSup_image_Icc