diff --git a/Mathlib/Analysis/Calculus/ContDiff/FTaylorSeries.lean b/Mathlib/Analysis/Calculus/ContDiff/FTaylorSeries.lean index 168c48c5ac9ff..7cc8a905e12ec 100644 --- a/Mathlib/Analysis/Calculus/ContDiff/FTaylorSeries.lean +++ b/Mathlib/Analysis/Calculus/ContDiff/FTaylorSeries.lean @@ -412,9 +412,14 @@ theorem iteratedFDerivWithin_zero_eq_comp : iteratedFDerivWithin π•œ 0 f s = (continuousMultilinearCurryFin0 π•œ E F).symm ∘ f := rfl +@[simp] +theorem dist_iteratedFDerivWithin_zero (f : E β†’ F) (s : Set E) (x : E) + (g : E β†’ F) (t : Set E) (y : E) : + dist (iteratedFDerivWithin π•œ 0 f s x) (iteratedFDerivWithin π•œ 0 g t y) = dist (f x) (g y) := by + simp only [iteratedFDerivWithin_zero_eq_comp, comp_apply, LinearIsometryEquiv.dist_map] + @[simp] theorem norm_iteratedFDerivWithin_zero : β€–iteratedFDerivWithin π•œ 0 f s xβ€– = β€–f xβ€– := by - -- Porting note: added `comp_apply`. rw [iteratedFDerivWithin_zero_eq_comp, comp_apply, LinearIsometryEquiv.norm_map] theorem iteratedFDerivWithin_succ_apply_left {n : β„•} (m : Fin (n + 1) β†’ E) : @@ -442,6 +447,23 @@ theorem norm_fderivWithin_iteratedFDerivWithin {n : β„•} : -- Porting note: added `comp_apply`. rw [iteratedFDerivWithin_succ_eq_comp_left, comp_apply, LinearIsometryEquiv.norm_map] +@[simp] +theorem dist_iteratedFDerivWithin_one (f g : E β†’ F) {y} + (hsx : UniqueDiffWithinAt π•œ s x) (hyt : UniqueDiffWithinAt π•œ t y) : + dist (iteratedFDerivWithin π•œ 1 f s x) (iteratedFDerivWithin π•œ 1 g t y) + = dist (fderivWithin π•œ f s x) (fderivWithin π•œ g t y) := by + simp only [iteratedFDerivWithin_succ_eq_comp_left, comp_apply, + LinearIsometryEquiv.dist_map, iteratedFDerivWithin_zero_eq_comp, + LinearIsometryEquiv.comp_fderivWithin, hsx, hyt] + apply (continuousMultilinearCurryFin0 π•œ E F).symm.toLinearIsometry.postcomp.dist_map + +@[simp] +theorem norm_iteratedFDerivWithin_one (f : E β†’ F) (h : UniqueDiffWithinAt π•œ s x) : + β€–iteratedFDerivWithin π•œ 1 f s xβ€– = β€–fderivWithin π•œ f s xβ€– := by + simp only [← norm_fderivWithin_iteratedFDerivWithin, + iteratedFDerivWithin_zero_eq_comp, LinearIsometryEquiv.comp_fderivWithin _ h] + apply (continuousMultilinearCurryFin0 π•œ E F).symm.toLinearIsometry.norm_toContinuousLinearMap_comp + theorem iteratedFDerivWithin_succ_apply_right {n : β„•} (hs : UniqueDiffOn π•œ s) (hx : x ∈ s) (m : Fin (n + 1) β†’ E) : (iteratedFDerivWithin π•œ (n + 1) f s x : (Fin (n + 1) β†’ E) β†’ F) m =