diff --git a/Mathlib/CategoryTheory/Shift/Adjunction.lean b/Mathlib/CategoryTheory/Shift/Adjunction.lean index d1a9ba68aa2ef..8f6a5a6ddc1f9 100644 --- a/Mathlib/CategoryTheory/Shift/Adjunction.lean +++ b/Mathlib/CategoryTheory/Shift/Adjunction.lean @@ -197,8 +197,8 @@ The property for `CommShift` structures on `F` and `G` to be compatible with an adjunction `F ⊣ G`. -/ class CommShift : Prop where - commShift_unit' : NatTrans.CommShift adj.unit A := by infer_instance - commShift_counit' : NatTrans.CommShift adj.counit A := by infer_instance + commShift_unit : NatTrans.CommShift adj.unit A := by infer_instance + commShift_counit : NatTrans.CommShift adj.counit A := by infer_instance open CommShift in attribute [instance] commShift_unit commShift_counit @@ -229,7 +229,7 @@ namespace CommShift /-- Constructor for `Adjunction.CommShift`. -/ lemma mk' (h : NatTrans.CommShift adj.unit A) : adj.CommShift A where - commShift_counit' := ⟨fun a ↦ by + commShift_counit := ⟨fun a ↦ by ext simp only [Functor.comp_obj, Functor.id_obj, NatTrans.comp_app, Functor.commShiftIso_comp_hom_app, whiskerRight_app, assoc, whiskerLeft_app, @@ -512,8 +512,8 @@ instance [h : E.inverse.CommShift A] : E.symm.functor.CommShift A := h /-- Constructor for `Equivalence.CommShift`. -/ lemma mk' (h : NatTrans.CommShift E.unitIso.hom A) : E.CommShift A where - commShift_unit' := h - commShift_counit' := (Adjunction.CommShift.mk' E.toAdjunction A h).commShift_counit + commShift_unit := h + commShift_counit := (Adjunction.CommShift.mk' E.toAdjunction A h).commShift_counit /-- The forward functor of the identity equivalence is compatible with shifts.