diff --git a/Mathlib/RingTheory/Kaehler/CotangentComplex.lean b/Mathlib/RingTheory/Kaehler/CotangentComplex.lean index dac8656f870a9..ac09d0b46e6e7 100644 --- a/Mathlib/RingTheory/Kaehler/CotangentComplex.lean +++ b/Mathlib/RingTheory/Kaehler/CotangentComplex.lean @@ -353,7 +353,8 @@ lemma H1Cotangent.map_comp map (g.comp f) = (map g).restrictScalars S ∘ₗ map f := by ext; simp [Cotangent.map_comp] -/-- Maps `P₁ → P₂` and `P₂ → P₁` between extensions induce an isomorphism of `H¹(L)`. -/ +/-- Maps `P₁ → P₂` and `P₂ → P₁` between extensions +induce an isomorphism between `H¹(L_P₁)` and `H¹(L_P₂)`. -/ @[simps! apply] noncomputable def H1Cotangent.equiv {P₁ P₂ : Extension R S} (f₁ : P₁.Hom P₂) (f₂ : P₂.Hom P₁) : diff --git a/Mathlib/RingTheory/Smooth/Kaehler.lean b/Mathlib/RingTheory/Smooth/Kaehler.lean index b948520724728..fdd183e5bc48a 100644 --- a/Mathlib/RingTheory/Smooth/Kaehler.lean +++ b/Mathlib/RingTheory/Smooth/Kaehler.lean @@ -527,7 +527,7 @@ def homInfinitesimal (P₁ P₂ : Extension R S) [FormallySmooth R P₁.Ring] : exact FormallySmooth.liftOfSurjective_apply _ (IsScalarTower.toAlgHom R P₂.infinitesimal.Ring S) _ _ x } -/-- Formally smooth extensions have isomorphic `H¹(L)`. -/ +/-- Formally smooth extensions have isomorphic `H¹(L_P)`. -/ noncomputable def H1Cotangent.equivOfFormallySmooth (P₁ P₂ : Extension R S) [FormallySmooth R P₁.Ring] [FormallySmooth R P₂.Ring] :