From 25f427c3569562eff0d0880654a018e7027e7800 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Violeta=20Hern=C3=A1ndez?= Date: Mon, 18 Nov 2024 02:41:21 +0000 Subject: [PATCH] feat(SetTheory/Cardinal/Aleph): some lemmas on `omega` (#18542) --- Mathlib/SetTheory/Cardinal/Aleph.lean | 23 ++++++++++++++++++++++- Mathlib/SetTheory/Ordinal/Arithmetic.lean | 4 ---- Mathlib/SetTheory/Ordinal/Basic.lean | 3 --- 3 files changed, 22 insertions(+), 8 deletions(-) diff --git a/Mathlib/SetTheory/Cardinal/Aleph.lean b/Mathlib/SetTheory/Cardinal/Aleph.lean index 1212a22dd9926..5d5d56a75f0ee 100644 --- a/Mathlib/SetTheory/Cardinal/Aleph.lean +++ b/Mathlib/SetTheory/Cardinal/Aleph.lean @@ -221,6 +221,10 @@ theorem omega0_le_omega (o : Ordinal) : ω ≤ ω_ o := by rw [← omega_zero, omega_le_omega] exact Ordinal.zero_le o +/-- For the theorem `0 < ω`, see `omega0_pos`. -/ +theorem omega_pos (o : Ordinal) : 0 < ω_ o := + omega0_pos.trans_le (omega0_le_omega o) + theorem omega0_lt_omega1 : ω < ω₁ := by rw [← omega_zero, omega_lt_omega] exact zero_lt_one @@ -306,6 +310,11 @@ theorem lift_preAleph (o : Ordinal.{u}) : lift.{v} (preAleph o) = preAleph (Ordi (preAleph.toInitialSeg.trans liftInitialSeg).eq (Ordinal.liftInitialSeg.trans preAleph.toInitialSeg) o +@[simp] +theorem _root_.Ordinal.lift_preOmega (o : Ordinal.{u}) : + Ordinal.lift.{v} (preOmega o) = preOmega (Ordinal.lift.{v} o) := by + rw [← ord_preAleph, lift_ord, lift_preAleph, ord_preAleph] + theorem preAleph_le_of_isLimit {o : Ordinal} (l : o.IsLimit) {c} : preAleph o ≤ c ↔ ∀ o' < o, preAleph o' ≤ c := ⟨fun h o' h' => (preAleph_le_preAleph.2 <| h'.le).trans h, fun h => by @@ -383,6 +392,12 @@ theorem aleph_zero : ℵ_ 0 = ℵ₀ := by rw [aleph_eq_preAleph, add_zero, preA theorem lift_aleph (o : Ordinal.{u}) : lift.{v} (aleph o) = aleph (Ordinal.lift.{v} o) := by simp [aleph_eq_preAleph] +/-- For the theorem `lift ω = ω`, see `lift_omega0`. -/ +@[simp] +theorem _root_.Ordinal.lift_omega (o : Ordinal.{u}) : + Ordinal.lift.{v} (ω_ o) = ω_ (Ordinal.lift.{v} o) := by + simp [omega_eq_preOmega] + theorem aleph_limit {o : Ordinal} (ho : o.IsLimit) : ℵ_ o = ⨆ a : Iio o, ℵ_ a := by apply le_antisymm _ (ciSup_le' _) · rw [aleph_eq_preAleph, preAleph_limit (ho.add _)] @@ -414,11 +429,17 @@ instance nonempty_toType_aleph (o : Ordinal) : Nonempty (ℵ_ o).ord.toType := b rw [toType_nonempty_iff_ne_zero, ← ord_zero] exact fun h => (ord_injective h).not_gt (aleph_pos o) +theorem isLimit_omega (o : Ordinal) : Ordinal.IsLimit (ω_ o) := by + rw [← ord_aleph] + exact isLimit_ord (aleph0_le_aleph _) + +@[deprecated isLimit_omega (since := "2024-10-24")] theorem ord_aleph_isLimit (o : Ordinal) : (ℵ_ o).ord.IsLimit := isLimit_ord <| aleph0_le_aleph _ +-- TODO: get rid of this instance where it's used. instance (o : Ordinal) : NoMaxOrder (ℵ_ o).ord.toType := - toType_noMax_of_succ_lt (ord_aleph_isLimit o).2 + toType_noMax_of_succ_lt (isLimit_ord <| aleph0_le_aleph o).2 @[simp] theorem range_aleph : range aleph = Set.Ici ℵ₀ := by diff --git a/Mathlib/SetTheory/Ordinal/Arithmetic.lean b/Mathlib/SetTheory/Ordinal/Arithmetic.lean index 650de1e4c9277..6cc7dfe51df9e 100644 --- a/Mathlib/SetTheory/Ordinal/Arithmetic.lean +++ b/Mathlib/SetTheory/Ordinal/Arithmetic.lean @@ -2304,10 +2304,6 @@ alias nat_lt_omega := nat_lt_omega0 theorem omega0_pos : 0 < ω := nat_lt_omega0 0 -@[deprecated (since := "2024-09-30")] -theorem omega_pos : 0 < ω := - nat_lt_omega0 0 - theorem omega0_ne_zero : ω ≠ 0 := omega0_pos.ne' diff --git a/Mathlib/SetTheory/Ordinal/Basic.lean b/Mathlib/SetTheory/Ordinal/Basic.lean index 983753c1f9a2c..31c0ed062c498 100644 --- a/Mathlib/SetTheory/Ordinal/Basic.lean +++ b/Mathlib/SetTheory/Ordinal/Basic.lean @@ -779,9 +779,6 @@ theorem card_omega0 : card ω = ℵ₀ := theorem lift_omega0 : lift ω = ω := lift_lift _ -@[deprecated (since := "2024-09-30")] -alias lift_omega := lift_omega0 - /-! ### Definition and first properties of addition on ordinals