diff --git a/Mathlib/CategoryTheory/Abelian/InjectiveResolution.lean b/Mathlib/CategoryTheory/Abelian/InjectiveResolution.lean index 4b849f14821d8..9110373e9c67a 100644 --- a/Mathlib/CategoryTheory/Abelian/InjectiveResolution.lean +++ b/Mathlib/CategoryTheory/Abelian/InjectiveResolution.lean @@ -240,7 +240,7 @@ lemma InjectiveResolution.iso_hom_naturality {X Y : C} (f : X ⟶ Y) I.iso.hom ≫ (HomotopyCategory.quotient _ _).map φ := by apply HomotopyCategory.eq_of_homotopy apply descHomotopy f - simp + all_goals aesop @[reassoc] lemma InjectiveResolution.iso_inv_naturality {X Y : C} (f : X ⟶ Y) diff --git a/Mathlib/CategoryTheory/Limits/Shapes/Pullback/Square.lean b/Mathlib/CategoryTheory/Limits/Shapes/Pullback/Square.lean index a6834c27400d2..ddd0fc6d43918 100644 --- a/Mathlib/CategoryTheory/Limits/Shapes/Pullback/Square.lean +++ b/Mathlib/CategoryTheory/Limits/Shapes/Pullback/Square.lean @@ -79,7 +79,7 @@ lemma IsPullback.of_iso {sq₁ sq₂ : Square C} (h : sq₁.IsPullback) refine CategoryTheory.IsPullback.of_iso h (evaluation₁.mapIso e) (evaluation₂.mapIso e) (evaluation₃.mapIso e) (evaluation₄.mapIso e) ?_ ?_ ?_ ?_ - simp + all_goals simp lemma IsPullback.iff_of_iso {sq₁ sq₂ : Square C} (e : sq₁ ≅ sq₂) : sq₁.IsPullback ↔ sq₂.IsPullback := @@ -90,7 +90,7 @@ lemma IsPushout.of_iso {sq₁ sq₂ : Square C} (h : sq₁.IsPushout) refine CategoryTheory.IsPushout.of_iso h (evaluation₁.mapIso e) (evaluation₂.mapIso e) (evaluation₃.mapIso e) (evaluation₄.mapIso e) ?_ ?_ ?_ ?_ - simp + all_goals simp lemma IsPushout.iff_of_iso {sq₁ sq₂ : Square C} (e : sq₁ ≅ sq₂) : sq₁.IsPushout ↔ sq₂.IsPushout := diff --git a/Mathlib/Probability/StrongLaw.lean b/Mathlib/Probability/StrongLaw.lean index b17898d7f7abc..af74169d09b3b 100644 --- a/Mathlib/Probability/StrongLaw.lean +++ b/Mathlib/Probability/StrongLaw.lean @@ -426,7 +426,7 @@ theorem strong_law_aux1 {c : ℝ} (c_one : 1 < c) {ε : ℝ} (εpos : 0 < ε) : · simp only [mem_sigma, mem_range, filter_congr_decidable, mem_filter, and_imp, Sigma.forall] exact fun a b haN hb ↦ ⟨hb.trans_le <| u_mono <| Nat.le_pred_of_lt haN, haN, hb⟩ - simp + all_goals simp _ ≤ ∑ j ∈ range (u (N - 1)), c ^ 5 * (c - 1)⁻¹ ^ 3 / ↑j ^ 2 * Var[Y j] := by apply sum_le_sum fun j hj => ?_ rcases @eq_zero_or_pos _ _ j with (rfl | hj)