diff --git a/src/analysis/analytic/basic.lean b/src/analysis/analytic/basic.lean index 988541d8d5778..c33669722d9d5 100644 --- a/src/analysis/analytic/basic.lean +++ b/src/analysis/analytic/basic.lean @@ -6,7 +6,7 @@ Authors: Sébastien Gouëzel, Yury Kudryashov import analysis.calculus.formal_multilinear_series import analysis.specific_limits.normed import logic.equiv.fin -import topology.algebra.module.infinite_sum +import topology.algebra.infinite_sum.module /-! # Analytic functions diff --git a/src/analysis/analytic/isolated_zeros.lean b/src/analysis/analytic/isolated_zeros.lean index a46bfea457a1d..8d7b7cffa7e1b 100644 --- a/src/analysis/analytic/isolated_zeros.lean +++ b/src/analysis/analytic/isolated_zeros.lean @@ -7,7 +7,6 @@ import analysis.analytic.basic import analysis.calculus.dslope import analysis.calculus.fderiv_analytic import analysis.calculus.formal_multilinear_series -import topology.algebra.infinite_sum import analysis.analytic.uniqueness /-! diff --git a/src/analysis/complex/basic.lean b/src/analysis/complex/basic.lean index 6d82754acffc0..455d27e524793 100644 --- a/src/analysis/complex/basic.lean +++ b/src/analysis/complex/basic.lean @@ -6,7 +6,7 @@ Authors: Sébastien Gouëzel import data.complex.module import data.complex.exponential import data.is_R_or_C.basic -import topology.algebra.module.infinite_sum +import topology.algebra.infinite_sum.module import topology.instances.real_vector_space /-! diff --git a/src/analysis/normed_space/finite_dimension.lean b/src/analysis/normed_space/finite_dimension.lean index 01b7a84f295b7..8ef4d84dab195 100644 --- a/src/analysis/normed_space/finite_dimension.lean +++ b/src/analysis/normed_space/finite_dimension.lean @@ -10,7 +10,7 @@ import analysis.normed_space.operator_norm import analysis.normed_space.riesz_lemma import linear_algebra.matrix.to_lin import topology.algebra.module.finite_dimension -import topology.algebra.module.infinite_sum +import topology.algebra.infinite_sum.module import topology.instances.matrix /-! diff --git a/src/measure_theory/measure/outer_measure.lean b/src/measure_theory/measure/outer_measure.lean index 5cdfc931f5781..28fbdf03a3618 100644 --- a/src/measure_theory/measure/outer_measure.lean +++ b/src/measure_theory/measure/outer_measure.lean @@ -7,7 +7,6 @@ import analysis.specific_limits.basic import measure_theory.pi_system import data.countable.basic import data.fin.vec_notation -import topology.algebra.infinite_sum /-! # Outer Measures diff --git a/src/number_theory/l_series.lean b/src/number_theory/l_series.lean index 006b39f8105e5..0e6db23043981 100644 --- a/src/number_theory/l_series.lean +++ b/src/number_theory/l_series.lean @@ -6,7 +6,7 @@ Authors: Aaron Anderson import analysis.normed_space.finite_dimension import analysis.p_series import number_theory.arithmetic_function -import topology.algebra.infinite_sum +import topology.algebra.infinite_sum.basic /-! # L-series diff --git a/src/topology/algebra/infinite_sum.lean b/src/topology/algebra/infinite_sum/basic.lean similarity index 67% rename from src/topology/algebra/infinite_sum.lean rename to src/topology/algebra/infinite_sum/basic.lean index 04c92573cb782..1ad434de6e1d2 100644 --- a/src/topology/algebra/infinite_sum.lean +++ b/src/topology/algebra/infinite_sum/basic.lean @@ -3,12 +3,10 @@ Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl -/ -import algebra.big_operators.intervals -import algebra.big_operators.nat_antidiagonal +import data.nat.parity import logic.encodable.lattice -import topology.algebra.mul_action -import topology.algebra.order.monotone_convergence -import topology.instances.real +import topology.algebra.uniform_group +import topology.algebra.star /-! # Infinite sum over a topological monoid @@ -27,8 +25,8 @@ generally, see `has_sum.tendsto_sum_nat`. -/ noncomputable theory -open finset filter function classical -open_locale topology classical big_operators nnreal +open classical filter finset function +open_locale big_operators classical topology variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} @@ -254,56 +252,6 @@ lemma function.surjective.summable_iff_of_has_sum_iff {α' : Type*} [add_comm_mo summable f ↔ summable g := hes.exists.trans $ exists_congr $ @he -section mul_opposite -open mul_opposite - -lemma has_sum.op (hf : has_sum f a) : has_sum (λ a, op (f a)) (op a) := -(hf.map (@op_add_equiv α _) continuous_op : _) - -lemma summable.op (hf : summable f) : summable (op ∘ f) := hf.has_sum.op.summable - -lemma has_sum.unop {f : β → αᵐᵒᵖ} {a : αᵐᵒᵖ} (hf : has_sum f a) : - has_sum (λ a, unop (f a)) (unop a) := -(hf.map (@op_add_equiv α _).symm continuous_unop : _) - -lemma summable.unop {f : β → αᵐᵒᵖ} (hf : summable f) : summable (unop ∘ f) := -hf.has_sum.unop.summable - -@[simp] lemma has_sum_op : has_sum (λ a, op (f a)) (op a) ↔ has_sum f a := -⟨has_sum.unop, has_sum.op⟩ - -@[simp] lemma has_sum_unop {f : β → αᵐᵒᵖ} {a : αᵐᵒᵖ} : - has_sum (λ a, unop (f a)) (unop a) ↔ has_sum f a := -⟨has_sum.op, has_sum.unop⟩ - -@[simp] lemma summable_op : summable (λ a, op (f a)) ↔ summable f := -⟨summable.unop, summable.op⟩ - -@[simp] lemma summable_unop {f : β → αᵐᵒᵖ} : summable (λ a, unop (f a)) ↔ summable f := -⟨summable.op, summable.unop⟩ - -end mul_opposite - -section has_continuous_star -variables [star_add_monoid α] [has_continuous_star α] - -lemma has_sum.star (h : has_sum f a) : has_sum (λ b, star (f b)) (star a) := -by simpa only using h.map (star_add_equiv : α ≃+ α) continuous_star - -lemma summable.star (hf : summable f) : summable (λ b, star (f b)) := -hf.has_sum.star.summable - -lemma summable.of_star (hf : summable (λ b, star (f b))) : summable f := -by simpa only [star_star] using hf.star - -@[simp] lemma summable_star_iff : summable (λ b, star (f b)) ↔ summable f := -⟨summable.of_star, summable.star⟩ - -@[simp] lemma summable_star_iff' : summable (star f) ↔ summable f := -summable_star_iff - -end has_continuous_star - variable [has_continuous_add α] lemma has_sum.add (hf : has_sum f a) (hg : has_sum g b) : has_sum (λb, f b + g b) (a + b) := @@ -562,17 +510,6 @@ lemma tsum_eq_tsum_of_ne_zero_bij {g : γ → α} (i : support g → β) ∑' x, f x = ∑' y, g y := tsum_eq_tsum_of_has_sum_iff_has_sum $ λ _, has_sum_iff_has_sum_of_ne_zero_bij i hi hf hfg -lemma tsum_op : ∑' x, mul_opposite.op (f x) = mul_opposite.op (∑' x, f x) := -begin - by_cases h : summable f, - { exact h.has_sum.op.tsum_eq, }, - { have ho := summable_op.not.mpr h, - rw [tsum_eq_zero_of_not_summable h, tsum_eq_zero_of_not_summable ho, mul_opposite.op_zero] }, -end - -lemma tsum_unop {f : β → αᵐᵒᵖ} : ∑' x, mul_opposite.unop (f x) = mul_opposite.unop (∑' x, f x) := -mul_opposite.op_injective tsum_op.symm - /-! ### `tsum` on subsets -/ @[simp] lemma finset.tsum_subtype (s : finset β) (f : β → α) : @@ -656,19 +593,6 @@ end end has_continuous_add -section has_continuous_star -variables [star_add_monoid α] [has_continuous_star α] - -lemma tsum_star : star (∑' b, f b) = ∑' b, star (f b) := -begin - by_cases hf : summable f, - { exact hf.has_sum.star.tsum_eq.symm, }, - { rw [tsum_eq_zero_of_not_summable hf, tsum_eq_zero_of_not_summable (mt summable.of_star hf), - star_zero] }, -end - -end has_continuous_star - open encodable section encodable @@ -764,33 +688,6 @@ lemma tsum_even_add_odd {f : ℕ → α} (he : summable (λ k, f (2 * k))) end tsum -section prod - -variables [add_comm_monoid α] [topological_space α] [add_comm_monoid γ] [topological_space γ] - -lemma has_sum.prod_mk {f : β → α} {g : β → γ} {a : α} {b : γ} - (hf : has_sum f a) (hg : has_sum g b) : - has_sum (λ x, (⟨f x, g x⟩ : α × γ)) ⟨a, b⟩ := -by simp [has_sum, ← prod_mk_sum, filter.tendsto.prod_mk_nhds hf hg] - -end prod - -section pi -variables {ι : Type*} {π : α → Type*} [∀ x, add_comm_monoid (π x)] [∀ x, topological_space (π x)] - -lemma pi.has_sum {f : ι → ∀ x, π x} {g : ∀ x, π x} : - has_sum f g ↔ ∀ x, has_sum (λ i, f i x) (g x) := -by simp only [has_sum, tendsto_pi_nhds, sum_apply] - -lemma pi.summable {f : ι → ∀ x, π x} : summable f ↔ ∀ x, summable (λ i, f i x) := -by simp only [summable, pi.has_sum, skolem] - -lemma tsum_apply [∀ x, t2_space (π x)] {f : ι → ∀ x, π x}{x : α} (hf : summable f) : - (∑' i, f i) x = ∑' i, f i x := -(pi.has_sum.mp hf.has_sum x).tsum_eq.symm - -end pi - section topological_group variables [add_comm_group α] [topological_space α] [topological_add_group α] variables {f g : β → α} {a a₁ a₂ : α} @@ -1052,306 +949,6 @@ end nat end topological_group -section topological_semiring -variables [non_unital_non_assoc_semiring α] [topological_space α] [topological_semiring α] -variables {f g : β → α} {a a₁ a₂ : α} -lemma has_sum.mul_left (a₂) (h : has_sum f a₁) : has_sum (λb, a₂ * f b) (a₂ * a₁) := -by simpa only using h.map (add_monoid_hom.mul_left a₂) (continuous_const.mul continuous_id) - -lemma has_sum.mul_right (a₂) (hf : has_sum f a₁) : has_sum (λb, f b * a₂) (a₁ * a₂) := -by simpa only using hf.map (add_monoid_hom.mul_right a₂) (continuous_id.mul continuous_const) - -lemma summable.mul_left (a) (hf : summable f) : summable (λb, a * f b) := -(hf.has_sum.mul_left _).summable - -lemma summable.mul_right (a) (hf : summable f) : summable (λb, f b * a) := -(hf.has_sum.mul_right _).summable - -section tsum -variables [t2_space α] - -lemma summable.tsum_mul_left (a) (hf : summable f) : ∑'b, a * f b = a * ∑'b, f b := -(hf.has_sum.mul_left _).tsum_eq - -lemma summable.tsum_mul_right (a) (hf : summable f) : (∑'b, f b * a) = (∑'b, f b) * a := -(hf.has_sum.mul_right _).tsum_eq - -lemma commute.tsum_right (a) (h : ∀ b, commute a (f b)) : commute a (∑' b, f b) := -if hf : summable f then - (hf.tsum_mul_left a).symm.trans ((congr_arg _ $ funext h).trans (hf.tsum_mul_right a)) -else - (tsum_eq_zero_of_not_summable hf).symm ▸ commute.zero_right _ - -lemma commute.tsum_left (a) (h : ∀ b, commute (f b) a) : commute (∑' b, f b) a := -(commute.tsum_right _ $ λ b, (h b).symm).symm - -end tsum - -end topological_semiring - -section const_smul -variables {R : Type*} -[monoid R] -[topological_space α] [add_comm_monoid α] -[distrib_mul_action R α] [has_continuous_const_smul R α] -{f : β → α} - -lemma has_sum.const_smul {a : α} (r : R) (hf : has_sum f a) : has_sum (λ z, r • f z) (r • a) := -hf.map (distrib_mul_action.to_add_monoid_hom α r) (continuous_const_smul r) - -lemma summable.const_smul (r : R) (hf : summable f) : summable (λ z, r • f z) := -(hf.has_sum.const_smul r).summable - -lemma tsum_const_smul [t2_space α] (r : R) (hf : summable f) : ∑' z, r • f z = r • ∑' z, f z := -(hf.has_sum.const_smul r).tsum_eq - -end const_smul - -section smul_const -variables {R : Type*} -[semiring R] [topological_space R] -[topological_space α] [add_comm_monoid α] -[module R α] [has_continuous_smul R α] -{f : β → R} - -lemma has_sum.smul_const {r : R} (hf : has_sum f r) (a : α) : has_sum (λ z, f z • a) (r • a) := -hf.map ((smul_add_hom R α).flip a) (continuous_id.smul continuous_const) - -lemma summable.smul_const (hf : summable f) (a : α) : summable (λ z, f z • a) := -(hf.has_sum.smul_const a).summable - -lemma tsum_smul_const [t2_space α] (hf : summable f) (a : α) : ∑' z, f z • a = (∑' z, f z) • a := -(hf.has_sum.smul_const a).tsum_eq - -end smul_const - -section division_ring - -variables [division_ring α] [topological_space α] [topological_ring α] -{f g : β → α} {a a₁ a₂ : α} - -lemma has_sum.div_const (h : has_sum f a) (b : α) : has_sum (λ x, f x / b) (a / b) := -by simp only [div_eq_mul_inv, h.mul_right b⁻¹] - -lemma summable.div_const (h : summable f) (b : α) : summable (λ x, f x / b) := -(h.has_sum.div_const b).summable - -lemma has_sum_mul_left_iff (h : a₂ ≠ 0) : has_sum (λb, a₂ * f b) (a₂ * a₁) ↔ has_sum f a₁ := -⟨λ H, by simpa only [inv_mul_cancel_left₀ h] using H.mul_left a₂⁻¹, has_sum.mul_left _⟩ - -lemma has_sum_mul_right_iff (h : a₂ ≠ 0) : has_sum (λb, f b * a₂) (a₁ * a₂) ↔ has_sum f a₁ := -⟨λ H, by simpa only [mul_inv_cancel_right₀ h] using H.mul_right a₂⁻¹, has_sum.mul_right _⟩ - -lemma has_sum_div_const_iff (h : a₂ ≠ 0) : has_sum (λb, f b / a₂) (a₁ / a₂) ↔ has_sum f a₁ := -by simpa only [div_eq_mul_inv] using has_sum_mul_right_iff (inv_ne_zero h) - -lemma summable_mul_left_iff (h : a ≠ 0) : summable (λb, a * f b) ↔ summable f := -⟨λ H, by simpa only [inv_mul_cancel_left₀ h] using H.mul_left a⁻¹, λ H, H.mul_left _⟩ - -lemma summable_mul_right_iff (h : a ≠ 0) : summable (λb, f b * a) ↔ summable f := -⟨λ H, by simpa only [mul_inv_cancel_right₀ h] using H.mul_right a⁻¹, λ H, H.mul_right _⟩ - -lemma summable_div_const_iff (h : a ≠ 0) : summable (λb, f b / a) ↔ summable f := -by simpa only [div_eq_mul_inv] using summable_mul_right_iff (inv_ne_zero h) - -lemma tsum_mul_left [t2_space α] : (∑' x, a * f x) = a * ∑' x, f x := -if hf : summable f then hf.tsum_mul_left a -else if ha : a = 0 then by simp [ha] -else by rw [tsum_eq_zero_of_not_summable hf, - tsum_eq_zero_of_not_summable (mt (summable_mul_left_iff ha).mp hf), mul_zero] - -lemma tsum_mul_right [t2_space α] : (∑' x, f x * a) = (∑' x, f x) * a := -if hf : summable f then hf.tsum_mul_right a -else if ha : a = 0 then by simp [ha] -else by rw [tsum_eq_zero_of_not_summable hf, - tsum_eq_zero_of_not_summable (mt (summable_mul_right_iff ha).mp hf), zero_mul] - -lemma tsum_div_const [t2_space α] : (∑' x, f x / a) = (∑' x, f x) / a := -by simpa only [div_eq_mul_inv] using tsum_mul_right - -end division_ring - -section order_topology -variables [ordered_add_comm_monoid α] [topological_space α] [order_closed_topology α] -variables {f g : β → α} {a a₁ a₂ : α} - -lemma has_sum_le (h : ∀b, f b ≤ g b) (hf : has_sum f a₁) (hg : has_sum g a₂) : a₁ ≤ a₂ := -le_of_tendsto_of_tendsto' hf hg $ assume s, sum_le_sum $ assume b _, h b - -@[mono] lemma has_sum_mono (hf : has_sum f a₁) (hg : has_sum g a₂) (h : f ≤ g) : a₁ ≤ a₂ := -has_sum_le h hf hg - -lemma has_sum_le_of_sum_le (hf : has_sum f a) (h : ∀ s : finset β, ∑ b in s, f b ≤ a₂) : - a ≤ a₂ := -le_of_tendsto' hf h - -lemma le_has_sum_of_le_sum (hf : has_sum f a) (h : ∀ s : finset β, a₂ ≤ ∑ b in s, f b) : - a₂ ≤ a := -ge_of_tendsto' hf h - -lemma has_sum_le_inj {g : γ → α} (i : β → γ) (hi : injective i) (hs : ∀c∉set.range i, 0 ≤ g c) - (h : ∀b, f b ≤ g (i b)) (hf : has_sum f a₁) (hg : has_sum g a₂) : a₁ ≤ a₂ := -have has_sum (λc, (partial_inv i c).cases_on' 0 f) a₁, -begin - refine (has_sum_iff_has_sum_of_ne_zero_bij (i ∘ coe) _ _ _).2 hf, - { exact assume c₁ c₂ eq, hi eq }, - { intros c hc, - rw [mem_support] at hc, - cases eq : partial_inv i c with b; rw eq at hc, - { contradiction }, - { rw [partial_inv_of_injective hi] at eq, - exact ⟨⟨b, hc⟩, eq⟩ } }, - { assume c, simp [partial_inv_left hi, option.cases_on'] } -end, -begin - refine has_sum_le (assume c, _) this hg, - by_cases c ∈ set.range i, - { rcases h with ⟨b, rfl⟩, - rw [partial_inv_left hi, option.cases_on'], - exact h _ }, - { have : partial_inv i c = none := dif_neg h, - rw [this, option.cases_on'], - exact hs _ h } -end - -lemma tsum_le_tsum_of_inj {g : γ → α} (i : β → γ) (hi : injective i) (hs : ∀c∉set.range i, 0 ≤ g c) - (h : ∀b, f b ≤ g (i b)) (hf : summable f) (hg : summable g) : tsum f ≤ tsum g := -has_sum_le_inj i hi hs h hf.has_sum hg.has_sum - -lemma sum_le_has_sum (s : finset β) (hs : ∀ b∉s, 0 ≤ f b) (hf : has_sum f a) : - ∑ b in s, f b ≤ a := -ge_of_tendsto hf (eventually_at_top.2 ⟨s, λ t hst, - sum_le_sum_of_subset_of_nonneg hst $ λ b hbt hbs, hs b hbs⟩) - -lemma is_lub_has_sum (h : ∀ b, 0 ≤ f b) (hf : has_sum f a) : - is_lub (set.range (λ s : finset β, ∑ b in s, f b)) a := -is_lub_of_tendsto_at_top (finset.sum_mono_set_of_nonneg h) hf - -lemma le_has_sum (hf : has_sum f a) (b : β) (hb : ∀ b' ≠ b, 0 ≤ f b') : f b ≤ a := -calc f b = ∑ b in {b}, f b : finset.sum_singleton.symm -... ≤ a : sum_le_has_sum _ (by { convert hb, simp }) hf - -lemma sum_le_tsum {f : β → α} (s : finset β) (hs : ∀ b∉s, 0 ≤ f b) (hf : summable f) : - ∑ b in s, f b ≤ ∑' b, f b := -sum_le_has_sum s hs hf.has_sum - -lemma le_tsum (hf : summable f) (b : β) (hb : ∀ b' ≠ b, 0 ≤ f b') : f b ≤ ∑' b, f b := -le_has_sum (summable.has_sum hf) b hb - -lemma tsum_le_tsum (h : ∀b, f b ≤ g b) (hf : summable f) (hg : summable g) : ∑'b, f b ≤ ∑'b, g b := -has_sum_le h hf.has_sum hg.has_sum - -@[mono] lemma tsum_mono (hf : summable f) (hg : summable g) (h : f ≤ g) : - ∑' n, f n ≤ ∑' n, g n := -tsum_le_tsum h hf hg - -lemma tsum_le_of_sum_le (hf : summable f) (h : ∀ s : finset β, ∑ b in s, f b ≤ a₂) : - ∑' b, f b ≤ a₂ := -has_sum_le_of_sum_le hf.has_sum h - -lemma tsum_le_of_sum_le' (ha₂ : 0 ≤ a₂) (h : ∀ s : finset β, ∑ b in s, f b ≤ a₂) : - ∑' b, f b ≤ a₂ := -begin - by_cases hf : summable f, - { exact tsum_le_of_sum_le hf h }, - { rw tsum_eq_zero_of_not_summable hf, - exact ha₂ } -end - -lemma has_sum.nonneg (h : ∀ b, 0 ≤ g b) (ha : has_sum g a) : 0 ≤ a := -has_sum_le h has_sum_zero ha - -lemma has_sum.nonpos (h : ∀ b, g b ≤ 0) (ha : has_sum g a) : a ≤ 0 := -has_sum_le h ha has_sum_zero - -lemma tsum_nonneg (h : ∀ b, 0 ≤ g b) : 0 ≤ ∑'b, g b := -begin - by_cases hg : summable g, - { exact hg.has_sum.nonneg h }, - { simp [tsum_eq_zero_of_not_summable hg] } -end - -lemma tsum_nonpos (h : ∀ b, f b ≤ 0) : ∑'b, f b ≤ 0 := -begin - by_cases hf : summable f, - { exact hf.has_sum.nonpos h }, - { simp [tsum_eq_zero_of_not_summable hf] } -end - -end order_topology - -section ordered_topological_group - -variables [ordered_add_comm_group α] [topological_space α] [topological_add_group α] - [order_closed_topology α] {f g : β → α} {a₁ a₂ : α} - -lemma has_sum_lt {i : β} (h : ∀ (b : β), f b ≤ g b) (hi : f i < g i) - (hf : has_sum f a₁) (hg : has_sum g a₂) : - a₁ < a₂ := -have update f i 0 ≤ update g i 0 := update_le_update_iff.mpr ⟨rfl.le, λ i _, h i⟩, -have 0 - f i + a₁ ≤ 0 - g i + a₂ := has_sum_le this (hf.update i 0) (hg.update i 0), -by simpa only [zero_sub, add_neg_cancel_left] using add_lt_add_of_lt_of_le hi this - -@[mono] lemma has_sum_strict_mono (hf : has_sum f a₁) (hg : has_sum g a₂) (h : f < g) : a₁ < a₂ := -let ⟨hle, i, hi⟩ := pi.lt_def.mp h in has_sum_lt hle hi hf hg - -lemma tsum_lt_tsum {i : β} (h : ∀ (b : β), f b ≤ g b) (hi : f i < g i) - (hf : summable f) (hg : summable g) : - ∑' n, f n < ∑' n, g n := -has_sum_lt h hi hf.has_sum hg.has_sum - -@[mono] lemma tsum_strict_mono (hf : summable f) (hg : summable g) (h : f < g) : - ∑' n, f n < ∑' n, g n := -let ⟨hle, i, hi⟩ := pi.lt_def.mp h in tsum_lt_tsum hle hi hf hg - -lemma tsum_pos (hsum : summable g) (hg : ∀ b, 0 ≤ g b) (i : β) (hi : 0 < g i) : - 0 < ∑' b, g b := -by { rw ← tsum_zero, exact tsum_lt_tsum hg hi summable_zero hsum } - -lemma has_sum_zero_iff_of_nonneg (hf : ∀ i, 0 ≤ f i) : has_sum f 0 ↔ f = 0 := -begin - split, - { intros hf', - ext i, - by_contra hi', - have hi : 0 < f i := lt_of_le_of_ne (hf i) (ne.symm hi'), - simpa using has_sum_lt hf hi has_sum_zero hf' }, - { rintros rfl, - exact has_sum_zero }, -end - -end ordered_topological_group - -section canonically_ordered -variables [canonically_ordered_add_monoid α] [topological_space α] [order_closed_topology α] -variables {f : β → α} {a : α} - -lemma le_has_sum' (hf : has_sum f a) (b : β) : f b ≤ a := -le_has_sum hf b $ λ _ _, zero_le _ - -lemma le_tsum' (hf : summable f) (b : β) : f b ≤ ∑' b, f b := -le_tsum hf b $ λ _ _, zero_le _ - -lemma has_sum_zero_iff : has_sum f 0 ↔ ∀ x, f x = 0 := -begin - refine ⟨_, λ h, _⟩, - { contrapose!, - exact λ ⟨x, hx⟩ h, irrefl _ (lt_of_lt_of_le (pos_iff_ne_zero.2 hx) (le_has_sum' h x)) }, - { convert has_sum_zero, - exact funext h } -end - -lemma tsum_eq_zero_iff (hf : summable f) : ∑' i, f i = 0 ↔ ∀ x, f x = 0 := -by rw [←has_sum_zero_iff, hf.has_sum_iff] - -lemma tsum_ne_zero_iff (hf : summable f) : ∑' i, f i ≠ 0 ↔ ∃ x, f x ≠ 0 := -by rw [ne.def, tsum_eq_zero_iff hf, not_forall] - -lemma is_lub_has_sum' (hf : has_sum f a) : is_lub (set.range (λ s : finset β, ∑ b in s, f b)) a := -is_lub_of_tendsto_at_top (finset.sum_mono_set f) hf - -end canonically_ordered - section uniform_group variables [add_comm_group α] [uniform_space α] @@ -1529,275 +1126,124 @@ end lemma summable.tendsto_at_top_zero {f : ℕ → G} (hf : summable f) : tendsto f at_top (𝓝 0) := by { rw ←nat.cofinite_eq_at_top, exact hf.tendsto_cofinite_zero } -lemma summable.tendsto_top_of_pos {α : Type*} - [linear_ordered_field α] [topological_space α] [order_topology α] {f : ℕ → α} - (hf : summable f⁻¹) (hf' : ∀ n, 0 < f n) : tendsto f at_top at_top := -begin - rw [show f = f⁻¹⁻¹, by { ext, simp }], - apply filter.tendsto.inv_tendsto_zero, - apply tendsto_nhds_within_of_tendsto_nhds_of_eventually_within _ - (summable.tendsto_at_top_zero hf), - rw eventually_iff_exists_mem, - refine ⟨set.Ioi 0, Ioi_mem_at_top _, λ _ _, _⟩, - rw [set.mem_Ioi, inv_eq_one_div, one_div, pi.inv_apply, _root_.inv_pos], - exact hf' _, -end - end topological_group -section preorder - -variables {E : Type*} [preorder E] [add_comm_monoid E] - [topological_space E] [order_closed_topology E] [t2_space E] - -lemma tsum_le_of_sum_range_le {f : ℕ → E} {c : E} (hsum : summable f) - (h : ∀ n, ∑ i in finset.range n, f i ≤ c) : ∑' n, f n ≤ c := -let ⟨l, hl⟩ := hsum in hl.tsum_eq.symm ▸ le_of_tendsto' hl.tendsto_sum_nat h - -end preorder +section const_smul +variables [monoid γ] [topological_space α] [add_comm_monoid α] [distrib_mul_action γ α] + [has_continuous_const_smul γ α] {f : β → α} -section linear_order +lemma has_sum.const_smul {a : α} (b : γ) (hf : has_sum f a) : has_sum (λ i, b • f i) (b • a) := +hf.map (distrib_mul_action.to_add_monoid_hom α _) $ continuous_const_smul _ -/-! For infinite sums taking values in a linearly ordered monoid, the existence of a least upper -bound for the finite sums is a criterion for summability. +lemma summable.const_smul (b : γ) (hf : summable f) : summable (λ i, b • f i) := +(hf.has_sum.const_smul _).summable -This criterion is useful when applied in a linearly ordered monoid which is also a complete or -conditionally complete linear order, such as `ℝ`, `ℝ≥0`, `ℝ≥0∞`, because it is then easy to check -the existence of a least upper bound. --/ +lemma tsum_const_smul [t2_space α] (b : γ) (hf : summable f) : ∑' i, b • f i = b • ∑' i, f i := +(hf.has_sum.const_smul _).tsum_eq -lemma has_sum_of_is_lub_of_nonneg [linear_ordered_add_comm_monoid β] [topological_space β] - [order_topology β] {f : α → β} (b : β) (h : ∀ b, 0 ≤ f b) - (hf : is_lub (set.range (λ s, ∑ a in s, f a)) b) : - has_sum f b := -tendsto_at_top_is_lub (finset.sum_mono_set_of_nonneg h) hf - -lemma has_sum_of_is_lub [canonically_linear_ordered_add_monoid β] [topological_space β] - [order_topology β] {f : α → β} (b : β) (hf : is_lub (set.range (λ s, ∑ a in s, f a)) b) : - has_sum f b := -tendsto_at_top_is_lub (finset.sum_mono_set f) hf - -lemma summable_abs_iff [linear_ordered_add_comm_group β] [uniform_space β] - [uniform_add_group β] [complete_space β] {f : α → β} : - summable (λ x, |f x|) ↔ summable f := -have h1 : ∀ x : {x | 0 ≤ f x}, |f x| = f x := λ x, abs_of_nonneg x.2, -have h2 : ∀ x : {x | 0 ≤ f x}ᶜ, |f x| = -f x := λ x, abs_of_neg (not_le.1 x.2), -calc summable (λ x, |f x|) ↔ - summable (λ x : {x | 0 ≤ f x}, |f x|) ∧ summable (λ x : {x | 0 ≤ f x}ᶜ, |f x|) : - summable_subtype_and_compl.symm -... ↔ summable (λ x : {x | 0 ≤ f x}, f x) ∧ summable (λ x : {x | 0 ≤ f x}ᶜ, -f x) : - by simp only [h1, h2] -... ↔ _ : by simp only [summable_neg_iff, summable_subtype_and_compl] - -alias summable_abs_iff ↔ summable.of_abs summable.abs - -lemma finite_of_summable_const [linear_ordered_add_comm_group β] [archimedean β] - [topological_space β] [order_closed_topology β] {b : β} (hb : 0 < b) - (hf : summable (λ a : α, b)) : - set.finite (set.univ : set α) := -begin - have H : ∀ s : finset α, s.card • b ≤ ∑' a : α, b, - { intros s, - simpa using sum_le_has_sum s (λ a ha, hb.le) hf.has_sum }, - obtain ⟨n, hn⟩ := archimedean.arch (∑' a : α, b) hb, - have : ∀ s : finset α, s.card ≤ n, - { intros s, - simpa [nsmul_le_nsmul_iff hb] using (H s).trans hn }, - haveI : fintype α := fintype_of_finset_card_le n this, - exact set.finite_univ -end +end const_smul -end linear_order +/-! ### Product and pi types -/ -section cauchy_seq -open filter +section prod +variables [add_comm_monoid α] [topological_space α] [add_comm_monoid γ] [topological_space γ] -/-- If the extended distance between consecutive points of a sequence is estimated -by a summable series of `nnreal`s, then the original sequence is a Cauchy sequence. -/ -lemma cauchy_seq_of_edist_le_of_summable [pseudo_emetric_space α] {f : ℕ → α} (d : ℕ → ℝ≥0) - (hf : ∀ n, edist (f n) (f n.succ) ≤ d n) (hd : summable d) : cauchy_seq f := -begin - refine emetric.cauchy_seq_iff_nnreal.2 (λ ε εpos, _), - -- Actually we need partial sums of `d` to be a Cauchy sequence - replace hd : cauchy_seq (λ (n : ℕ), ∑ x in range n, d x) := - let ⟨_, H⟩ := hd in H.tendsto_sum_nat.cauchy_seq, - -- Now we take the same `N` as in one of the definitions of a Cauchy sequence - refine (metric.cauchy_seq_iff'.1 hd ε (nnreal.coe_pos.2 εpos)).imp (λ N hN n hn, _), - have hsum := hN n hn, - -- We simplify the known inequality - rw [dist_nndist, nnreal.nndist_eq, ← sum_range_add_sum_Ico _ hn, add_tsub_cancel_left] at hsum, - norm_cast at hsum, - replace hsum := lt_of_le_of_lt (le_max_left _ _) hsum, - rw edist_comm, - -- Then use `hf` to simplify the goal to the same form - apply lt_of_le_of_lt (edist_le_Ico_sum_of_edist_le hn (λ k _ _, hf k)), - assumption_mod_cast -end +lemma has_sum.prod_mk {f : β → α} {g : β → γ} {a : α} {b : γ} + (hf : has_sum f a) (hg : has_sum g b) : + has_sum (λ x, (⟨f x, g x⟩ : α × γ)) ⟨a, b⟩ := +by simp [has_sum, ← prod_mk_sum, filter.tendsto.prod_mk_nhds hf hg] -/-- If the distance between consecutive points of a sequence is estimated by a summable series, -then the original sequence is a Cauchy sequence. -/ -lemma cauchy_seq_of_dist_le_of_summable [pseudo_metric_space α] {f : ℕ → α} (d : ℕ → ℝ) - (hf : ∀ n, dist (f n) (f n.succ) ≤ d n) (hd : summable d) : cauchy_seq f := -begin - refine metric.cauchy_seq_iff'.2 (λε εpos, _), - replace hd : cauchy_seq (λ (n : ℕ), ∑ x in range n, d x) := - let ⟨_, H⟩ := hd in H.tendsto_sum_nat.cauchy_seq, - refine (metric.cauchy_seq_iff'.1 hd ε εpos).imp (λ N hN n hn, _), - have hsum := hN n hn, - rw [real.dist_eq, ← sum_Ico_eq_sub _ hn] at hsum, - calc dist (f n) (f N) = dist (f N) (f n) : dist_comm _ _ - ... ≤ ∑ x in Ico N n, d x : dist_le_Ico_sum_of_dist_le hn (λ k _ _, hf k) - ... ≤ |∑ x in Ico N n, d x| : le_abs_self _ - ... < ε : hsum -end +end prod -lemma cauchy_seq_of_summable_dist [pseudo_metric_space α] {f : ℕ → α} - (h : summable (λn, dist (f n) (f n.succ))) : cauchy_seq f := -cauchy_seq_of_dist_le_of_summable _ (λ _, le_rfl) h +section pi +variables {ι : Type*} {π : α → Type*} [∀ x, add_comm_monoid (π x)] [∀ x, topological_space (π x)] -lemma dist_le_tsum_of_dist_le_of_tendsto [pseudo_metric_space α] {f : ℕ → α} (d : ℕ → ℝ) - (hf : ∀ n, dist (f n) (f n.succ) ≤ d n) (hd : summable d) {a : α} (ha : tendsto f at_top (𝓝 a)) - (n : ℕ) : - dist (f n) a ≤ ∑' m, d (n + m) := -begin - refine le_of_tendsto (tendsto_const_nhds.dist ha) - (eventually_at_top.2 ⟨n, λ m hnm, _⟩), - refine le_trans (dist_le_Ico_sum_of_dist_le hnm (λ k _ _, hf k)) _, - rw [sum_Ico_eq_sum_range], - refine sum_le_tsum (range _) (λ _ _, le_trans dist_nonneg (hf _)) _, - exact hd.comp_injective (add_right_injective n) -end +lemma pi.has_sum {f : ι → ∀ x, π x} {g : ∀ x, π x} : + has_sum f g ↔ ∀ x, has_sum (λ i, f i x) (g x) := +by simp only [has_sum, tendsto_pi_nhds, sum_apply] -lemma dist_le_tsum_of_dist_le_of_tendsto₀ [pseudo_metric_space α] {f : ℕ → α} (d : ℕ → ℝ) - (hf : ∀ n, dist (f n) (f n.succ) ≤ d n) (hd : summable d) {a : α} (ha : tendsto f at_top (𝓝 a)) : - dist (f 0) a ≤ tsum d := -by simpa only [zero_add] using dist_le_tsum_of_dist_le_of_tendsto d hf hd ha 0 +lemma pi.summable {f : ι → ∀ x, π x} : summable f ↔ ∀ x, summable (λ i, f i x) := +by simp only [summable, pi.has_sum, skolem] -lemma dist_le_tsum_dist_of_tendsto [pseudo_metric_space α] {f : ℕ → α} - (h : summable (λn, dist (f n) (f n.succ))) {a : α} (ha : tendsto f at_top (𝓝 a)) (n) : - dist (f n) a ≤ ∑' m, dist (f (n+m)) (f (n+m).succ) := -show dist (f n) a ≤ ∑' m, (λx, dist (f x) (f x.succ)) (n + m), from -dist_le_tsum_of_dist_le_of_tendsto (λ n, dist (f n) (f n.succ)) (λ _, le_rfl) h ha n +lemma tsum_apply [∀ x, t2_space (π x)] {f : ι → ∀ x, π x}{x : α} (hf : summable f) : + (∑' i, f i) x = ∑' i, f i x := +(pi.has_sum.mp hf.has_sum x).tsum_eq.symm -lemma dist_le_tsum_dist_of_tendsto₀ [pseudo_metric_space α] {f : ℕ → α} - (h : summable (λn, dist (f n) (f n.succ))) {a : α} (ha : tendsto f at_top (𝓝 a)) : - dist (f 0) a ≤ ∑' n, dist (f n) (f n.succ) := -by simpa only [zero_add] using dist_le_tsum_dist_of_tendsto h ha 0 +end pi -end cauchy_seq +/-! ### Multiplicative opposite -/ -/-! ## Multipliying two infinite sums +section mul_opposite +open mul_opposite +variables [add_comm_monoid α] [topological_space α] {f : β → α} {a : α} -In this section, we prove various results about `(∑' x : β, f x) * (∑' y : γ, g y)`. Note that we -always assume that the family `λ x : β × γ, f x.1 * g x.2` is summable, since there is no way to -deduce this from the summmabilities of `f` and `g` in general, but if you are working in a normed -space, you may want to use the analogous lemmas in `analysis/normed_space/basic` -(e.g `tsum_mul_tsum_of_summable_norm`). +lemma has_sum.op (hf : has_sum f a) : has_sum (λ a, op (f a)) (op a) := +(hf.map (@op_add_equiv α _) continuous_op : _) -We first establish results about arbitrary index types, `β` and `γ`, and then we specialize to -`β = γ = ℕ` to prove the Cauchy product formula (see `tsum_mul_tsum_eq_tsum_sum_antidiagonal`). +lemma summable.op (hf : summable f) : summable (op ∘ f) := hf.has_sum.op.summable -### Arbitrary index types --/ +lemma has_sum.unop {f : β → αᵐᵒᵖ} {a : αᵐᵒᵖ} (hf : has_sum f a) : + has_sum (λ a, unop (f a)) (unop a) := +(hf.map (@op_add_equiv α _).symm continuous_unop : _) -section tsum_mul_tsum +lemma summable.unop {f : β → αᵐᵒᵖ} (hf : summable f) : summable (unop ∘ f) := +hf.has_sum.unop.summable -variables [topological_space α] [t3_space α] [non_unital_non_assoc_semiring α] - [topological_semiring α] {f : β → α} {g : γ → α} {s t u : α} +@[simp] lemma has_sum_op : has_sum (λ a, op (f a)) (op a) ↔ has_sum f a := +⟨has_sum.unop, has_sum.op⟩ -lemma has_sum.mul_eq (hf : has_sum f s) (hg : has_sum g t) - (hfg : has_sum (λ (x : β × γ), f x.1 * g x.2) u) : - s * t = u := -have key₁ : has_sum (λ b, f b * t) (s * t), - from hf.mul_right t, -have this : ∀ b : β, has_sum (λ c : γ, f b * g c) (f b * t), - from λ b, hg.mul_left (f b), -have key₂ : has_sum (λ b, f b * t) u, - from has_sum.prod_fiberwise hfg this, -key₁.unique key₂ +@[simp] lemma has_sum_unop {f : β → αᵐᵒᵖ} {a : αᵐᵒᵖ} : + has_sum (λ a, unop (f a)) (unop a) ↔ has_sum f a := +⟨has_sum.op, has_sum.unop⟩ -lemma has_sum.mul (hf : has_sum f s) (hg : has_sum g t) - (hfg : summable (λ (x : β × γ), f x.1 * g x.2)) : - has_sum (λ (x : β × γ), f x.1 * g x.2) (s * t) := -let ⟨u, hu⟩ := hfg in -(hf.mul_eq hg hu).symm ▸ hu +@[simp] lemma summable_op : summable (λ a, op (f a)) ↔ summable f := ⟨summable.unop, summable.op⟩ -/-- Product of two infinites sums indexed by arbitrary types. - See also `tsum_mul_tsum_of_summable_norm` if `f` and `g` are abolutely summable. -/ -lemma tsum_mul_tsum (hf : summable f) (hg : summable g) - (hfg : summable (λ (x : β × γ), f x.1 * g x.2)) : - (∑' x, f x) * (∑' y, g y) = (∑' z : β × γ, f z.1 * g z.2) := -hf.has_sum.mul_eq hg.has_sum hfg.has_sum +@[simp] lemma summable_unop {f : β → αᵐᵒᵖ} : summable (λ a, unop (f a)) ↔ summable f := +⟨summable.op, summable.unop⟩ -end tsum_mul_tsum +variables [t2_space α] -section cauchy_product +lemma tsum_op : ∑' x, mul_opposite.op (f x) = mul_opposite.op (∑' x, f x) := +begin + by_cases h : summable f, + { exact h.has_sum.op.tsum_eq }, + { have ho := summable_op.not.mpr h, + rw [tsum_eq_zero_of_not_summable h, tsum_eq_zero_of_not_summable ho, mul_opposite.op_zero] } +end -/-! ### `ℕ`-indexed families (Cauchy product) +lemma tsum_unop {f : β → αᵐᵒᵖ} : ∑' x, mul_opposite.unop (f x) = mul_opposite.unop (∑' x, f x) := +mul_opposite.op_injective tsum_op.symm -We prove two versions of the Cauchy product formula. The first one is -`tsum_mul_tsum_eq_tsum_sum_range`, where the `n`-th term is a sum over `finset.range (n+1)` -involving `nat` subtraction. -In order to avoid `nat` subtraction, we also provide `tsum_mul_tsum_eq_tsum_sum_antidiagonal`, -where the `n`-th term is a sum over all pairs `(k, l)` such that `k+l=n`, which corresponds to the -`finset` `finset.nat.antidiagonal n` -/ +end mul_opposite -variables {f : ℕ → α} {g : ℕ → α} +/-! ### Interaction with the star -/ -open finset +section has_continuous_star +variables [add_comm_monoid α] [topological_space α] [star_add_monoid α] [has_continuous_star α] + {f : β → α} {a : α} -variables [topological_space α] [non_unital_non_assoc_semiring α] +lemma has_sum.star (h : has_sum f a) : has_sum (λ b, star (f b)) (star a) := +by simpa only using h.map (star_add_equiv : α ≃+ α) continuous_star -/- The family `(k, l) : ℕ × ℕ ↦ f k * g l` is summable if and only if the family -`(n, k, l) : Σ (n : ℕ), nat.antidiagonal n ↦ f k * g l` is summable. -/ -lemma summable_mul_prod_iff_summable_mul_sigma_antidiagonal {f g : ℕ → α} : - summable (λ x : ℕ × ℕ, f x.1 * g x.2) ↔ - summable (λ x : (Σ (n : ℕ), nat.antidiagonal n), f (x.2 : ℕ × ℕ).1 * g (x.2 : ℕ × ℕ).2) := -nat.sigma_antidiagonal_equiv_prod.summable_iff.symm +lemma summable.star (hf : summable f) : summable (λ b, star (f b)) := +hf.has_sum.star.summable -variables [t3_space α] [topological_semiring α] +lemma summable.of_star (hf : summable (λ b, star (f b))) : summable f := +by simpa only [star_star] using hf.star -lemma summable_sum_mul_antidiagonal_of_summable_mul {f g : ℕ → α} - (h : summable (λ x : ℕ × ℕ, f x.1 * g x.2)) : - summable (λ n, ∑ kl in nat.antidiagonal n, f kl.1 * g kl.2) := -begin - rw summable_mul_prod_iff_summable_mul_sigma_antidiagonal at h, - conv {congr, funext, rw [← finset.sum_finset_coe, ← tsum_fintype]}, - exact h.sigma' (λ n, (has_sum_fintype _).summable), -end +@[simp] lemma summable_star_iff : summable (λ b, star (f b)) ↔ summable f := +⟨summable.of_star, summable.star⟩ -/-- The Cauchy product formula for the product of two infinites sums indexed by `ℕ`, - expressed by summing on `finset.nat.antidiagonal`. - See also `tsum_mul_tsum_eq_tsum_sum_antidiagonal_of_summable_norm` - if `f` and `g` are absolutely summable. -/ -lemma tsum_mul_tsum_eq_tsum_sum_antidiagonal (hf : summable f) (hg : summable g) - (hfg : summable (λ (x : ℕ × ℕ), f x.1 * g x.2)) : - (∑' n, f n) * (∑' n, g n) = (∑' n, ∑ kl in nat.antidiagonal n, f kl.1 * g kl.2) := -begin - conv_rhs {congr, funext, rw [← finset.sum_finset_coe, ← tsum_fintype]}, - rw [tsum_mul_tsum hf hg hfg, ← nat.sigma_antidiagonal_equiv_prod.tsum_eq (_ : ℕ × ℕ → α)], - exact tsum_sigma' (λ n, (has_sum_fintype _).summable) - (summable_mul_prod_iff_summable_mul_sigma_antidiagonal.mp hfg) -end +@[simp] lemma summable_star_iff' : summable (star f) ↔ summable f := summable_star_iff -lemma summable_sum_mul_range_of_summable_mul {f g : ℕ → α} - (h : summable (λ x : ℕ × ℕ, f x.1 * g x.2)) : - summable (λ n, ∑ k in range (n+1), f k * g (n - k)) := -begin - simp_rw ← nat.sum_antidiagonal_eq_sum_range_succ (λ k l, f k * g l), - exact summable_sum_mul_antidiagonal_of_summable_mul h -end +variables [t2_space α] -/-- The Cauchy product formula for the product of two infinites sums indexed by `ℕ`, - expressed by summing on `finset.range`. - See also `tsum_mul_tsum_eq_tsum_sum_range_of_summable_norm` - if `f` and `g` are absolutely summable. -/ -lemma tsum_mul_tsum_eq_tsum_sum_range (hf : summable f) (hg : summable g) - (hfg : summable (λ (x : ℕ × ℕ), f x.1 * g x.2)) : - (∑' n, f n) * (∑' n, g n) = (∑' n, ∑ k in range (n+1), f k * g (n - k)) := +lemma tsum_star : star (∑' b, f b) = ∑' b, star (f b) := begin - simp_rw ← nat.sum_antidiagonal_eq_sum_range_succ (λ k l, f k * g l), - exact tsum_mul_tsum_eq_tsum_sum_antidiagonal hf hg hfg + by_cases hf : summable f, + { exact hf.has_sum.star.tsum_eq.symm, }, + { rw [tsum_eq_zero_of_not_summable hf, tsum_eq_zero_of_not_summable (mt summable.of_star hf), + star_zero] }, end -end cauchy_product +end has_continuous_star diff --git a/src/topology/algebra/module/infinite_sum.lean b/src/topology/algebra/infinite_sum/module.lean similarity index 80% rename from src/topology/algebra/module/infinite_sum.lean rename to src/topology/algebra/infinite_sum/module.lean index 4360e47ab5dd1..5ec77641df867 100644 --- a/src/topology/algebra/module/infinite_sum.lean +++ b/src/topology/algebra/infinite_sum/module.lean @@ -3,17 +3,34 @@ Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth, Yury Kudryashov, Frédéric Dupuis -/ +import topology.algebra.infinite_sum.basic import topology.algebra.module.basic -import topology.algebra.infinite_sum /-! # Infinite sums in topological vector spaces -/ +variables {ι R R₂ M M₂ : Type*} + +section smul_const +variables [semiring R] [topological_space R] [topological_space M] [add_comm_monoid M] [module R M] + [has_continuous_smul R M] {f : ι → R} + +lemma has_sum.smul_const {r : R} (hf : has_sum f r) (a : M) : has_sum (λ z, f z • a) (r • a) := +hf.map ((smul_add_hom R M).flip a) (continuous_id.smul continuous_const) + +lemma summable.smul_const (hf : summable f) (a : M) : summable (λ z, f z • a) := +(hf.has_sum.smul_const _).summable + +lemma tsum_smul_const [t2_space M] (hf : summable f) (a : M) : ∑' z, f z • a = (∑' z, f z) • a := +(hf.has_sum.smul_const _).tsum_eq + +end smul_const + section has_sum -- Results in this section hold for continuous additive monoid homomorphisms or equivalences but we -- don't have bundled continuous additive homomorphisms. -variables {ι R R₂ M M₂ : Type*} [semiring R] [semiring R₂] [add_comm_monoid M] [module R M] +variables [semiring R] [semiring R₂] [add_comm_monoid M] [module R M] [add_comm_monoid M₂] [module R₂ M₂] [topological_space M] [topological_space M₂] {σ : R →+* R₂} {σ' : R₂ →+* R} [ring_hom_inv_pair σ σ'] [ring_hom_inv_pair σ' σ] diff --git a/src/topology/algebra/infinite_sum/order.lean b/src/topology/algebra/infinite_sum/order.lean new file mode 100644 index 0000000000000..82195ab12f816 --- /dev/null +++ b/src/topology/algebra/infinite_sum/order.lean @@ -0,0 +1,262 @@ +/- +Copyright (c) 2017 Johannes Hölzl. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Authors: Johannes Hölzl +-/ +import algebra.order.archimedean +import topology.algebra.infinite_sum.basic +import topology.algebra.order.field +import topology.algebra.order.monotone_convergence + +/-! +# Infinite sum in an order + +This file provides lemmas about the interaction of infinite sums and order operations. +-/ + +open finset filter function +open_locale big_operators classical + +variables {ι κ α : Type*} + +section preorder +variables [preorder α] [add_comm_monoid α] [topological_space α] [order_closed_topology α] + [t2_space α] {f : ℕ → α} {c : α} + +lemma tsum_le_of_sum_range_le (hf : summable f) (h : ∀ n, ∑ i in range n, f i ≤ c) : + ∑' n, f n ≤ c := +let ⟨l, hl⟩ := hf in hl.tsum_eq.symm ▸ le_of_tendsto' hl.tendsto_sum_nat h + +end preorder + +section ordered_add_comm_monoid +variables [ordered_add_comm_monoid α] [topological_space α] [order_closed_topology α] {f g : ι → α} + {a a₁ a₂ : α} + +lemma has_sum_le (h : ∀ i, f i ≤ g i) (hf : has_sum f a₁) (hg : has_sum g a₂) : a₁ ≤ a₂ := +le_of_tendsto_of_tendsto' hf hg $ λ s, sum_le_sum $ λ i _, h i + +@[mono] lemma has_sum_mono (hf : has_sum f a₁) (hg : has_sum g a₂) (h : f ≤ g) : a₁ ≤ a₂ := +has_sum_le h hf hg + +lemma has_sum_le_of_sum_le (hf : has_sum f a) (h : ∀ s, ∑ i in s, f i ≤ a₂) : a ≤ a₂ := +le_of_tendsto' hf h + +lemma le_has_sum_of_le_sum (hf : has_sum f a) (h : ∀ s, a₂ ≤ ∑ i in s, f i) : a₂ ≤ a := +ge_of_tendsto' hf h + +lemma has_sum_le_inj {g : κ → α} (e : ι → κ) (he : injective e) (hs : ∀ c ∉ set.range e, 0 ≤ g c) + (h : ∀ i, f i ≤ g (e i)) (hf : has_sum f a₁) (hg : has_sum g a₂) : a₁ ≤ a₂ := +have has_sum (λ c, (partial_inv e c).cases_on' 0 f) a₁, +begin + refine (has_sum_iff_has_sum_of_ne_zero_bij (e ∘ coe) (λ c₁ c₂ hc, he hc) (λ c hc, _) _).2 hf, + { rw mem_support at hc, + cases eq : partial_inv e c with i; rw eq at hc, + { contradiction }, + { rw [partial_inv_of_injective he] at eq, + exact ⟨⟨i, hc⟩, eq⟩ } }, + { rintro c, + simp [partial_inv_left he, option.cases_on'] } +end, +begin + refine has_sum_le (λ c, _) this hg, + obtain ⟨i, rfl⟩ | h := em (c ∈ set.range e), + { rw [partial_inv_left he, option.cases_on'], + exact h _ }, + { have : partial_inv e c = none := dif_neg h, + rw [this, option.cases_on'], + exact hs _ h } +end + +lemma tsum_le_tsum_of_inj {g : κ → α} (e : ι → κ) (he : injective e) + (hs : ∀ c ∉ set.range e, 0 ≤ g c) (h : ∀ i, f i ≤ g (e i)) (hf : summable f) (hg : summable g) : + tsum f ≤ tsum g := +has_sum_le_inj _ he hs h hf.has_sum hg.has_sum + +lemma sum_le_has_sum (s : finset ι) (hs : ∀ i ∉ s, 0 ≤ f i) (hf : has_sum f a) : + ∑ i in s, f i ≤ a := +ge_of_tendsto hf (eventually_at_top.2 ⟨s, λ t hst, + sum_le_sum_of_subset_of_nonneg hst $ λ i hbt hbs, hs i hbs⟩) + +lemma is_lub_has_sum (h : ∀ i, 0 ≤ f i) (hf : has_sum f a) : + is_lub (set.range $ λ s, ∑ i in s, f i) a := +is_lub_of_tendsto_at_top (finset.sum_mono_set_of_nonneg h) hf + +lemma le_has_sum (hf : has_sum f a) (i : ι) (hb : ∀ b' ≠ i, 0 ≤ f b') : f i ≤ a := +calc f i = ∑ i in {i}, f i : finset.sum_singleton.symm +... ≤ a : sum_le_has_sum _ (by { convert hb, simp }) hf + +lemma sum_le_tsum {f : ι → α} (s : finset ι) (hs : ∀ i ∉ s, 0 ≤ f i) (hf : summable f) : + ∑ i in s, f i ≤ ∑' i, f i := +sum_le_has_sum s hs hf.has_sum + +lemma le_tsum (hf : summable f) (i : ι) (hb : ∀ b' ≠ i, 0 ≤ f b') : f i ≤ ∑' i, f i := +le_has_sum (summable.has_sum hf) i hb + +lemma tsum_le_tsum (h : ∀ i, f i ≤ g i) (hf : summable f) (hg : summable g) : + ∑' i, f i ≤ ∑' i, g i := +has_sum_le h hf.has_sum hg.has_sum + +@[mono] lemma tsum_mono (hf : summable f) (hg : summable g) (h : f ≤ g) : + ∑' n, f n ≤ ∑' n, g n := +tsum_le_tsum h hf hg + +lemma tsum_le_of_sum_le (hf : summable f) (h : ∀ s, ∑ i in s, f i ≤ a₂) : ∑' i, f i ≤ a₂ := +has_sum_le_of_sum_le hf.has_sum h + +lemma tsum_le_of_sum_le' (ha₂ : 0 ≤ a₂) (h : ∀ s, ∑ i in s, f i ≤ a₂) : ∑' i, f i ≤ a₂ := +begin + by_cases hf : summable f, + { exact tsum_le_of_sum_le hf h }, + { rw tsum_eq_zero_of_not_summable hf, + exact ha₂ } +end + +lemma has_sum.nonneg (h : ∀ i, 0 ≤ g i) (ha : has_sum g a) : 0 ≤ a := has_sum_le h has_sum_zero ha +lemma has_sum.nonpos (h : ∀ i, g i ≤ 0) (ha : has_sum g a) : a ≤ 0 := has_sum_le h ha has_sum_zero + +lemma tsum_nonneg (h : ∀ i, 0 ≤ g i) : 0 ≤ ∑' i, g i := +begin + by_cases hg : summable g, + { exact hg.has_sum.nonneg h }, + { simp [tsum_eq_zero_of_not_summable hg] } +end + +lemma tsum_nonpos (h : ∀ i, f i ≤ 0) : ∑' i, f i ≤ 0 := +begin + by_cases hf : summable f, + { exact hf.has_sum.nonpos h }, + { simp [tsum_eq_zero_of_not_summable hf] } +end + +end ordered_add_comm_monoid + +section ordered_add_comm_group +variables [ordered_add_comm_group α] [topological_space α] [topological_add_group α] + [order_closed_topology α] {f g : ι → α} {a₁ a₂ : α} {i : ι} + +lemma has_sum_lt (h : f ≤ g) (hi : f i < g i) (hf : has_sum f a₁) (hg : has_sum g a₂) : a₁ < a₂ := +have update f i 0 ≤ update g i 0 := update_le_update_iff.mpr ⟨rfl.le, λ i _, h i⟩, +have 0 - f i + a₁ ≤ 0 - g i + a₂ := has_sum_le this (hf.update i 0) (hg.update i 0), +by simpa only [zero_sub, add_neg_cancel_left] using add_lt_add_of_lt_of_le hi this + +@[mono] lemma has_sum_strict_mono (hf : has_sum f a₁) (hg : has_sum g a₂) (h : f < g) : a₁ < a₂ := +let ⟨hle, i, hi⟩ := pi.lt_def.mp h in has_sum_lt hle hi hf hg + +lemma tsum_lt_tsum (h : f ≤ g) (hi : f i < g i) (hf : summable f) (hg : summable g) : + ∑' n, f n < ∑' n, g n := +has_sum_lt h hi hf.has_sum hg.has_sum + +@[mono] lemma tsum_strict_mono (hf : summable f) (hg : summable g) (h : f < g) : + ∑' n, f n < ∑' n, g n := +let ⟨hle, i, hi⟩ := pi.lt_def.mp h in tsum_lt_tsum hle hi hf hg + +lemma tsum_pos (hsum : summable g) (hg : ∀ i, 0 ≤ g i) (i : ι) (hi : 0 < g i) : 0 < ∑' i, g i := +by { rw ←tsum_zero, exact tsum_lt_tsum hg hi summable_zero hsum } + +lemma has_sum_zero_iff_of_nonneg (hf : ∀ i, 0 ≤ f i) : has_sum f 0 ↔ f = 0 := +begin + refine ⟨λ hf', _, _⟩, + { ext i, + refine (hf i).eq_of_not_gt (λ hi, _), + simpa using has_sum_lt hf hi has_sum_zero hf' }, + { rintro rfl, + exact has_sum_zero } +end + +end ordered_add_comm_group + +section canonically_ordered_add_monoid +variables [canonically_ordered_add_monoid α] [topological_space α] [order_closed_topology α] + {f : ι → α} {a : α} + +lemma le_has_sum' (hf : has_sum f a) (i : ι) : f i ≤ a := le_has_sum hf i $ λ _ _, zero_le _ + +lemma le_tsum' (hf : summable f) (i : ι) : f i ≤ ∑' i, f i := le_tsum hf i $ λ _ _, zero_le _ + +lemma has_sum_zero_iff : has_sum f 0 ↔ ∀ x, f x = 0 := +begin + refine ⟨_, λ h, _⟩, + { contrapose!, + exact λ ⟨x, hx⟩ h, hx (nonpos_iff_eq_zero.1$ le_has_sum' h x) }, + { convert has_sum_zero, + exact funext h } +end + +lemma tsum_eq_zero_iff (hf : summable f) : ∑' i, f i = 0 ↔ ∀ x, f x = 0 := +by rw [←has_sum_zero_iff, hf.has_sum_iff] + +lemma tsum_ne_zero_iff (hf : summable f) : ∑' i, f i ≠ 0 ↔ ∃ x, f x ≠ 0 := +by rw [ne.def, tsum_eq_zero_iff hf, not_forall] + +lemma is_lub_has_sum' (hf : has_sum f a) : is_lub (set.range $ λ s, ∑ i in s, f i) a := +is_lub_of_tendsto_at_top (finset.sum_mono_set f) hf + +end canonically_ordered_add_monoid + +section linear_order + +/-! +For infinite sums taking values in a linearly ordered monoid, the existence of a least upper +bound for the finite sums is a criterion for summability. + +This criterion is useful when applied in a linearly ordered monoid which is also a complete or +conditionally complete linear order, such as `ℝ`, `ℝ≥0`, `ℝ≥0∞`, because it is then easy to check +the existence of a least upper bound. +-/ + +lemma has_sum_of_is_lub_of_nonneg [linear_ordered_add_comm_monoid α] [topological_space α] + [order_topology α] {f : ι → α} (i : α) (h : ∀ i, 0 ≤ f i) + (hf : is_lub (set.range $ λ s, ∑ i in s, f i) i) : + has_sum f i := +tendsto_at_top_is_lub (finset.sum_mono_set_of_nonneg h) hf + +lemma has_sum_of_is_lub [canonically_linear_ordered_add_monoid α] [topological_space α] + [order_topology α] {f : ι → α} (b : α) (hf : is_lub (set.range $ λ s, ∑ i in s, f i) b) : + has_sum f b := +tendsto_at_top_is_lub (finset.sum_mono_set f) hf + +lemma summable_abs_iff [linear_ordered_add_comm_group α] [uniform_space α] [uniform_add_group α] + [complete_space α] {f : ι → α} : + summable (λ x, |f x|) ↔ summable f := +have h1 : ∀ x : {x | 0 ≤ f x}, |f x| = f x := λ x, abs_of_nonneg x.2, +have h2 : ∀ x : {x | 0 ≤ f x}ᶜ, |f x| = -f x := λ x, abs_of_neg (not_le.1 x.2), +calc summable (λ x, |f x|) ↔ + summable (λ x : {x | 0 ≤ f x}, |f x|) ∧ summable (λ x : {x | 0 ≤ f x}ᶜ, |f x|) : + summable_subtype_and_compl.symm +... ↔ summable (λ x : {x | 0 ≤ f x}, f x) ∧ summable (λ x : {x | 0 ≤ f x}ᶜ, -f x) : + by simp only [h1, h2] +... ↔ _ : by simp only [summable_neg_iff, summable_subtype_and_compl] + +alias summable_abs_iff ↔ summable.of_abs summable.abs + +--TODO: Change the conclusion to `finite ι` +lemma finite_of_summable_const [linear_ordered_add_comm_group α] [topological_space α] + [archimedean α] [order_closed_topology α] {b : α} (hb : 0 < b) (hf : summable (λ i : ι, b)) : + (set.univ : set ι).finite := +begin + have H : ∀ s : finset ι, s.card • b ≤ ∑' i : ι, b, + { intros s, + simpa using sum_le_has_sum s (λ a ha, hb.le) hf.has_sum }, + obtain ⟨n, hn⟩ := archimedean.arch (∑' i : ι, b) hb, + have : ∀ s : finset ι, s.card ≤ n, + { intros s, + simpa [nsmul_le_nsmul_iff hb] using (H s).trans hn }, + haveI : fintype ι := fintype_of_finset_card_le n this, + exact set.finite_univ +end + +end linear_order + +lemma summable.tendsto_top_of_pos [linear_ordered_field α] [topological_space α] [order_topology α] + {f : ℕ → α} (hf : summable f⁻¹) (hf' : ∀ n, 0 < f n) : tendsto f at_top at_top := +begin + rw ←inv_inv f, + apply filter.tendsto.inv_tendsto_zero, + apply tendsto_nhds_within_of_tendsto_nhds_of_eventually_within _ + (summable.tendsto_at_top_zero hf), + rw eventually_iff_exists_mem, + refine ⟨set.Ioi 0, Ioi_mem_at_top _, λ _ _, _⟩, + rw [set.mem_Ioi, inv_eq_one_div, one_div, pi.inv_apply, _root_.inv_pos], + exact hf' _, +end diff --git a/src/topology/algebra/infinite_sum/real.lean b/src/topology/algebra/infinite_sum/real.lean new file mode 100644 index 0000000000000..ffed456271185 --- /dev/null +++ b/src/topology/algebra/infinite_sum/real.lean @@ -0,0 +1,90 @@ +/- +Copyright (c) 2019 Sébastien Gouëzel. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Authors: Sébastien Gouëzel, Yury Kudryashov +-/ +import topology.algebra.infinite_sum.order +import topology.instances.real + +/-! +# Infinite sum in the reals + +This file provides lemmas about Cauchy sequences in terms of infinite sums. +-/ + +open filter finset +open_locale big_operators nnreal topology + +variables {α : Type*} + +/-- If the extended distance between consecutive points of a sequence is estimated +by a summable series of `nnreal`s, then the original sequence is a Cauchy sequence. -/ +lemma cauchy_seq_of_edist_le_of_summable [pseudo_emetric_space α] {f : ℕ → α} (d : ℕ → ℝ≥0) + (hf : ∀ n, edist (f n) (f n.succ) ≤ d n) (hd : summable d) : cauchy_seq f := +begin + refine emetric.cauchy_seq_iff_nnreal.2 (λ ε εpos, _), + -- Actually we need partial sums of `d` to be a Cauchy sequence + replace hd : cauchy_seq (λ (n : ℕ), ∑ x in range n, d x) := + let ⟨_, H⟩ := hd in H.tendsto_sum_nat.cauchy_seq, + -- Now we take the same `N` as in one of the definitions of a Cauchy sequence + refine (metric.cauchy_seq_iff'.1 hd ε (nnreal.coe_pos.2 εpos)).imp (λ N hN n hn, _), + have hsum := hN n hn, + -- We simplify the known inequality + rw [dist_nndist, nnreal.nndist_eq, ← sum_range_add_sum_Ico _ hn, add_tsub_cancel_left] at hsum, + norm_cast at hsum, + replace hsum := lt_of_le_of_lt (le_max_left _ _) hsum, + rw edist_comm, + -- Then use `hf` to simplify the goal to the same form + apply lt_of_le_of_lt (edist_le_Ico_sum_of_edist_le hn (λ k _ _, hf k)), + assumption_mod_cast +end + +variables [pseudo_metric_space α] {f : ℕ → α} {a : α} + +/-- If the distance between consecutive points of a sequence is estimated by a summable series, +then the original sequence is a Cauchy sequence. -/ +lemma cauchy_seq_of_dist_le_of_summable (d : ℕ → ℝ) (hf : ∀ n, dist (f n) (f n.succ) ≤ d n) + (hd : summable d) : cauchy_seq f := +begin + refine metric.cauchy_seq_iff'.2 (λε εpos, _), + replace hd : cauchy_seq (λ (n : ℕ), ∑ x in range n, d x) := + let ⟨_, H⟩ := hd in H.tendsto_sum_nat.cauchy_seq, + refine (metric.cauchy_seq_iff'.1 hd ε εpos).imp (λ N hN n hn, _), + have hsum := hN n hn, + rw [real.dist_eq, ← sum_Ico_eq_sub _ hn] at hsum, + calc dist (f n) (f N) = dist (f N) (f n) : dist_comm _ _ + ... ≤ ∑ x in Ico N n, d x : dist_le_Ico_sum_of_dist_le hn (λ k _ _, hf k) + ... ≤ |∑ x in Ico N n, d x| : le_abs_self _ + ... < ε : hsum +end + +lemma cauchy_seq_of_summable_dist (h : summable (λ n, dist (f n) (f n.succ))) : cauchy_seq f := +cauchy_seq_of_dist_le_of_summable _ (λ _, le_rfl) h + +lemma dist_le_tsum_of_dist_le_of_tendsto (d : ℕ → ℝ) (hf : ∀ n, dist (f n) (f n.succ) ≤ d n) + (hd : summable d) {a : α} (ha : tendsto f at_top (𝓝 a)) (n : ℕ) : + dist (f n) a ≤ ∑' m, d (n + m) := +begin + refine le_of_tendsto (tendsto_const_nhds.dist ha) + (eventually_at_top.2 ⟨n, λ m hnm, _⟩), + refine le_trans (dist_le_Ico_sum_of_dist_le hnm (λ k _ _, hf k)) _, + rw [sum_Ico_eq_sum_range], + refine sum_le_tsum (range _) (λ _ _, le_trans dist_nonneg (hf _)) _, + exact hd.comp_injective (add_right_injective n) +end + +lemma dist_le_tsum_of_dist_le_of_tendsto₀ (d : ℕ → ℝ) (hf : ∀ n, dist (f n) (f n.succ) ≤ d n) + (hd : summable d) (ha : tendsto f at_top (𝓝 a)) : + dist (f 0) a ≤ tsum d := +by simpa only [zero_add] using dist_le_tsum_of_dist_le_of_tendsto d hf hd ha 0 + +lemma dist_le_tsum_dist_of_tendsto (h : summable (λ n, dist (f n) (f n.succ))) + (ha : tendsto f at_top (𝓝 a)) (n) : + dist (f n) a ≤ ∑' m, dist (f (n + m)) (f (n + m).succ) := +show dist (f n) a ≤ ∑' m, (λx, dist (f x) (f x.succ)) (n + m), from +dist_le_tsum_of_dist_le_of_tendsto (λ n, dist (f n) (f n.succ)) (λ _, le_rfl) h ha n + +lemma dist_le_tsum_dist_of_tendsto₀ (h : summable (λ n, dist (f n) (f n.succ))) + (ha : tendsto f at_top (𝓝 a)) : + dist (f 0) a ≤ ∑' n, dist (f n) (f n.succ) := +by simpa only [zero_add] using dist_le_tsum_dist_of_tendsto h ha 0 diff --git a/src/topology/algebra/infinite_sum/ring.lean b/src/topology/algebra/infinite_sum/ring.lean new file mode 100644 index 0000000000000..f3bcb71490d42 --- /dev/null +++ b/src/topology/algebra/infinite_sum/ring.lean @@ -0,0 +1,217 @@ +/- +Copyright (c) 2017 Johannes Hölzl. All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Authors: Johannes Hölzl +-/ +import topology.algebra.infinite_sum.basic +import topology.algebra.ring + +/-! +# Infinite sum in a ring + +This file provides lemmas about the interaction between infinite sums and multiplication. + +## Main results + +* `tsum_mul_tsum_eq_tsum_sum_antidiagonal`: Cauchy product formula +-/ + +open filter finset function +open_locale big_operators classical + +variables {ι κ R α : Type*} + +section non_unital_non_assoc_semiring +variables [non_unital_non_assoc_semiring α] [topological_space α] [topological_semiring α] + {f g : ι → α} {a a₁ a₂ : α} + +lemma has_sum.mul_left (a₂) (h : has_sum f a₁) : has_sum (λ i, a₂ * f i) (a₂ * a₁) := +by simpa only using h.map (add_monoid_hom.mul_left a₂) (continuous_const.mul continuous_id) + +lemma has_sum.mul_right (a₂) (hf : has_sum f a₁) : has_sum (λ i, f i * a₂) (a₁ * a₂) := +by simpa only using hf.map (add_monoid_hom.mul_right a₂) (continuous_id.mul continuous_const) + +lemma summable.mul_left (a) (hf : summable f) : summable (λ i, a * f i) := +(hf.has_sum.mul_left _).summable + +lemma summable.mul_right (a) (hf : summable f) : summable (λ i, f i * a) := +(hf.has_sum.mul_right _).summable + +section tsum +variables [t2_space α] + +lemma summable.tsum_mul_left (a) (hf : summable f) : ∑' i, a * f i = a * ∑' i, f i := +(hf.has_sum.mul_left _).tsum_eq + +lemma summable.tsum_mul_right (a) (hf : summable f) : ∑' i, f i * a = (∑' i, f i) * a := +(hf.has_sum.mul_right _).tsum_eq + +lemma commute.tsum_right (a) (h : ∀ i, commute a (f i)) : commute a (∑' i, f i) := +if hf : summable f then + (hf.tsum_mul_left a).symm.trans ((congr_arg _ $ funext h).trans (hf.tsum_mul_right a)) +else + (tsum_eq_zero_of_not_summable hf).symm ▸ commute.zero_right _ + +lemma commute.tsum_left (a) (h : ∀ i, commute (f i) a) : commute (∑' i, f i) a := +(commute.tsum_right _ $ λ i, (h i).symm).symm + +end tsum +end non_unital_non_assoc_semiring + +section division_semiring +variables [division_semiring α] [topological_space α] [topological_semiring α] {f g : ι → α} + {a a₁ a₂ : α} + +lemma has_sum.div_const (h : has_sum f a) (b : α) : has_sum (λ i, f i / b) (a / b) := +by simp only [div_eq_mul_inv, h.mul_right b⁻¹] + +lemma summable.div_const (h : summable f) (b : α) : summable (λ i, f i / b) := +(h.has_sum.div_const _).summable + +lemma has_sum_mul_left_iff (h : a₂ ≠ 0) : has_sum (λ i, a₂ * f i) (a₂ * a₁) ↔ has_sum f a₁ := +⟨λ H, by simpa only [inv_mul_cancel_left₀ h] using H.mul_left a₂⁻¹, has_sum.mul_left _⟩ + +lemma has_sum_mul_right_iff (h : a₂ ≠ 0) : has_sum (λ i, f i * a₂) (a₁ * a₂) ↔ has_sum f a₁ := +⟨λ H, by simpa only [mul_inv_cancel_right₀ h] using H.mul_right a₂⁻¹, has_sum.mul_right _⟩ + +lemma has_sum_div_const_iff (h : a₂ ≠ 0) : has_sum (λ i, f i / a₂) (a₁ / a₂) ↔ has_sum f a₁ := +by simpa only [div_eq_mul_inv] using has_sum_mul_right_iff (inv_ne_zero h) + +lemma summable_mul_left_iff (h : a ≠ 0) : summable (λ i, a * f i) ↔ summable f := +⟨λ H, by simpa only [inv_mul_cancel_left₀ h] using H.mul_left a⁻¹, λ H, H.mul_left _⟩ + +lemma summable_mul_right_iff (h : a ≠ 0) : summable (λ i, f i * a) ↔ summable f := +⟨λ H, by simpa only [mul_inv_cancel_right₀ h] using H.mul_right a⁻¹, λ H, H.mul_right _⟩ + +lemma summable_div_const_iff (h : a ≠ 0) : summable (λ i, f i / a) ↔ summable f := +by simpa only [div_eq_mul_inv] using summable_mul_right_iff (inv_ne_zero h) + +lemma tsum_mul_left [t2_space α] : (∑' x, a * f x) = a * ∑' x, f x := +if hf : summable f then hf.tsum_mul_left a +else if ha : a = 0 then by simp [ha] +else by rw [tsum_eq_zero_of_not_summable hf, + tsum_eq_zero_of_not_summable (mt (summable_mul_left_iff ha).mp hf), mul_zero] + +lemma tsum_mul_right [t2_space α] : (∑' x, f x * a) = (∑' x, f x) * a := +if hf : summable f then hf.tsum_mul_right a +else if ha : a = 0 then by simp [ha] +else by rw [tsum_eq_zero_of_not_summable hf, + tsum_eq_zero_of_not_summable (mt (summable_mul_right_iff ha).mp hf), zero_mul] + +lemma tsum_div_const [t2_space α] : (∑' x, f x / a) = (∑' x, f x) / a := +by simpa only [div_eq_mul_inv] using tsum_mul_right + +end division_semiring + +/-! +### Multipliying two infinite sums + +In this section, we prove various results about `(∑' x : ι, f x) * (∑' y : κ, g y)`. Note that we +always assume that the family `λ x : ι × κ, f x.1 * g x.2` is summable, since there is no way to +deduce this from the summmabilities of `f` and `g` in general, but if you are working in a normed +space, you may want to use the analogous lemmas in `analysis/normed_space/basic` +(e.g `tsum_mul_tsum_of_summable_norm`). + +We first establish results about arbitrary index types, `ι` and `κ`, and then we specialize to +`ι = κ = ℕ` to prove the Cauchy product formula (see `tsum_mul_tsum_eq_tsum_sum_antidiagonal`). + +#### Arbitrary index types +-/ + +section tsum_mul_tsum +variables [topological_space α] [t3_space α] [non_unital_non_assoc_semiring α] + [topological_semiring α] {f : ι → α} {g : κ → α} {s t u : α} + +lemma has_sum.mul_eq (hf : has_sum f s) (hg : has_sum g t) + (hfg : has_sum (λ (x : ι × κ), f x.1 * g x.2) u) : + s * t = u := +have key₁ : has_sum (λ i, f i * t) (s * t), + from hf.mul_right t, +have this : ∀ i : ι, has_sum (λ c : κ, f i * g c) (f i * t), + from λ i, hg.mul_left (f i), +have key₂ : has_sum (λ i, f i * t) u, + from has_sum.prod_fiberwise hfg this, +key₁.unique key₂ + +lemma has_sum.mul (hf : has_sum f s) (hg : has_sum g t) + (hfg : summable (λ (x : ι × κ), f x.1 * g x.2)) : + has_sum (λ (x : ι × κ), f x.1 * g x.2) (s * t) := +let ⟨u, hu⟩ := hfg in +(hf.mul_eq hg hu).symm ▸ hu + +/-- Product of two infinites sums indexed by arbitrary types. + See also `tsum_mul_tsum_of_summable_norm` if `f` and `g` are abolutely summable. -/ +lemma tsum_mul_tsum (hf : summable f) (hg : summable g) + (hfg : summable (λ (x : ι × κ), f x.1 * g x.2)) : + (∑' x, f x) * (∑' y, g y) = (∑' z : ι × κ, f z.1 * g z.2) := +hf.has_sum.mul_eq hg.has_sum hfg.has_sum + +end tsum_mul_tsum + +/-! +#### `ℕ`-indexed families (Cauchy product) + +We prove two versions of the Cauchy product formula. The first one is +`tsum_mul_tsum_eq_tsum_sum_range`, where the `n`-th term is a sum over `finset.range (n+1)` +involving `nat` subtraction. +In order to avoid `nat` subtraction, we also provide `tsum_mul_tsum_eq_tsum_sum_antidiagonal`, +where the `n`-th term is a sum over all pairs `(k, l)` such that `k+l=n`, which corresponds to the +`finset` `finset.nat.antidiagonal n` +-/ + +section cauchy_product +variables [topological_space α] [non_unital_non_assoc_semiring α] {f g : ℕ → α} + +/- The family `(k, l) : ℕ × ℕ ↦ f k * g l` is summable if and only if the family +`(n, k, l) : Σ (n : ℕ), nat.antidiagonal n ↦ f k * g l` is summable. -/ +lemma summable_mul_prod_iff_summable_mul_sigma_antidiagonal : + summable (λ x : ℕ × ℕ, f x.1 * g x.2) ↔ + summable (λ x : (Σ (n : ℕ), nat.antidiagonal n), f (x.2 : ℕ × ℕ).1 * g (x.2 : ℕ × ℕ).2) := +nat.sigma_antidiagonal_equiv_prod.summable_iff.symm + +variables [t3_space α] [topological_semiring α] + +lemma summable_sum_mul_antidiagonal_of_summable_mul (h : summable (λ x : ℕ × ℕ, f x.1 * g x.2)) : + summable (λ n, ∑ kl in nat.antidiagonal n, f kl.1 * g kl.2) := +begin + rw summable_mul_prod_iff_summable_mul_sigma_antidiagonal at h, + conv {congr, funext, rw [← finset.sum_finset_coe, ← tsum_fintype]}, + exact h.sigma' (λ n, (has_sum_fintype _).summable), +end + +/-- The **Cauchy product formula** for the product of two infinites sums indexed by `ℕ`, expressed +by summing on `finset.nat.antidiagonal`. + +See also `tsum_mul_tsum_eq_tsum_sum_antidiagonal_of_summable_norm` if `f` and `g` are absolutely +summable. -/ +lemma tsum_mul_tsum_eq_tsum_sum_antidiagonal (hf : summable f) (hg : summable g) + (hfg : summable (λ (x : ℕ × ℕ), f x.1 * g x.2)) : + (∑' n, f n) * (∑' n, g n) = (∑' n, ∑ kl in nat.antidiagonal n, f kl.1 * g kl.2) := +begin + conv_rhs {congr, funext, rw [← finset.sum_finset_coe, ← tsum_fintype]}, + rw [tsum_mul_tsum hf hg hfg, ← nat.sigma_antidiagonal_equiv_prod.tsum_eq (_ : ℕ × ℕ → α)], + exact tsum_sigma' (λ n, (has_sum_fintype _).summable) + (summable_mul_prod_iff_summable_mul_sigma_antidiagonal.mp hfg) +end + +lemma summable_sum_mul_range_of_summable_mul (h : summable (λ x : ℕ × ℕ, f x.1 * g x.2)) : + summable (λ n, ∑ k in range (n+1), f k * g (n - k)) := +begin + simp_rw ← nat.sum_antidiagonal_eq_sum_range_succ (λ k l, f k * g l), + exact summable_sum_mul_antidiagonal_of_summable_mul h +end + +/-- The **Cauchy product formula** for the product of two infinites sums indexed by `ℕ`, expressed +by summing on `finset.range`. + +See also `tsum_mul_tsum_eq_tsum_sum_range_of_summable_norm` if `f` and `g` are absolutely summable. +-/ +lemma tsum_mul_tsum_eq_tsum_sum_range (hf : summable f) (hg : summable g) + (hfg : summable (λ (x : ℕ × ℕ), f x.1 * g x.2)) : + (∑' n, f n) * (∑' n, g n) = ∑' n, ∑ k in range (n + 1), f k * g (n - k) := +begin + simp_rw ← nat.sum_antidiagonal_eq_sum_range_succ (λ k l, f k * g l), + exact tsum_mul_tsum_eq_tsum_sum_antidiagonal hf hg hfg +end + +end cauchy_product diff --git a/src/topology/continuous_function/algebra.lean b/src/topology/continuous_function/algebra.lean index 224f10c45667f..0a1bf7d10a6b7 100644 --- a/src/topology/continuous_function/algebra.lean +++ b/src/topology/continuous_function/algebra.lean @@ -3,16 +3,16 @@ Copyright (c) 2019 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison, Nicolò Cavalleri -/ -import topology.algebra.module.basic -import topology.continuous_function.ordered -import topology.algebra.uniform_group -import topology.uniform_space.compact_convergence -import topology.algebra.star -import topology.algebra.infinite_sum import algebra.algebra.pi import algebra.algebra.subalgebra.basic -import tactic.field_simp import algebra.star.star_alg_hom +import tactic.field_simp +import topology.algebra.module.basic +import topology.algebra.infinite_sum.basic +import topology.algebra.star +import topology.algebra.uniform_group +import topology.continuous_function.ordered +import topology.uniform_space.compact_convergence /-! # Algebraic structures over continuous functions diff --git a/src/topology/instances/ennreal.lean b/src/topology/instances/ennreal.lean index 35b53f56688e4..981d10c97a9dc 100644 --- a/src/topology/instances/ennreal.lean +++ b/src/topology/instances/ennreal.lean @@ -6,6 +6,8 @@ Authors: Johannes Hölzl import topology.instances.nnreal import topology.algebra.order.monotone_continuity import analysis.normed.group.basic +import topology.algebra.infinite_sum.real + /-! # Extended non-negative reals -/ diff --git a/src/topology/instances/matrix.lean b/src/topology/instances/matrix.lean index 9a783e84d865b..79c530090c26f 100644 --- a/src/topology/instances/matrix.lean +++ b/src/topology/instances/matrix.lean @@ -3,7 +3,7 @@ Copyright (c) 2021 Oliver Nash. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Oliver Nash, Eric Wieser -/ -import topology.algebra.infinite_sum +import topology.algebra.infinite_sum.basic import topology.algebra.ring import topology.algebra.star import linear_algebra.matrix.nonsingular_inverse diff --git a/src/topology/instances/nnreal.lean b/src/topology/instances/nnreal.lean index 2837afba8385a..e14feefae3884 100644 --- a/src/topology/instances/nnreal.lean +++ b/src/topology/instances/nnreal.lean @@ -3,8 +3,9 @@ Copyright (c) 2018 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin -/ -import topology.algebra.infinite_sum -import topology.algebra.group_with_zero +import topology.algebra.infinite_sum.order +import topology.algebra.infinite_sum.ring +import topology.instances.real /-! # Topology on `ℝ≥0` diff --git a/src/topology/instances/triv_sq_zero_ext.lean b/src/topology/instances/triv_sq_zero_ext.lean index 2ea5c325c5b64..9f4c07efe72c8 100644 --- a/src/topology/instances/triv_sq_zero_ext.lean +++ b/src/topology/instances/triv_sq_zero_ext.lean @@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE. Authors: Eric Wieser -/ import algebra.triv_sq_zero_ext -import topology.algebra.infinite_sum +import topology.algebra.infinite_sum.basic import topology.algebra.module.basic /-!