diff --git a/Batteries.lean b/Batteries.lean index b645334bf4..6c24d239bc 100644 --- a/Batteries.lean +++ b/Batteries.lean @@ -55,7 +55,6 @@ import Batteries.Lean.Meta.SavedState import Batteries.Lean.Meta.Simp import Batteries.Lean.Meta.UnusedNames import Batteries.Lean.MonadBacktrack -import Batteries.Lean.NameMap import Batteries.Lean.NameMapAttribute import Batteries.Lean.PersistentHashMap import Batteries.Lean.PersistentHashSet diff --git a/Batteries/Classes/SatisfiesM.lean b/Batteries/Classes/SatisfiesM.lean index 9b34cf475b..a89dad3dfd 100644 --- a/Batteries/Classes/SatisfiesM.lean +++ b/Batteries/Classes/SatisfiesM.lean @@ -248,9 +248,6 @@ instance : MonadSatisfying (Except ε) where | .error e => .error e val_eq {α p x?} h := by cases x? <;> simp --- This will be redundant after nightly-2024-11-08. -attribute [ext] ReaderT.ext - instance [Monad m] [LawfulMonad m][MonadSatisfying m] : MonadSatisfying (ReaderT ρ m) where satisfying {α p x} h := have h' := SatisfiesM_ReaderT_eq.mp h @@ -264,9 +261,6 @@ instance [Monad m] [LawfulMonad m][MonadSatisfying m] : MonadSatisfying (ReaderT instance [Monad m] [LawfulMonad m] [MonadSatisfying m] : MonadSatisfying (StateRefT' ω σ m) := inferInstanceAs <| MonadSatisfying (ReaderT _ _) --- This will be redundant after nightly-2024-11-08. -attribute [ext] StateT.ext - instance [Monad m] [LawfulMonad m] [MonadSatisfying m] : MonadSatisfying (StateT ρ m) where satisfying {α p x} h := have h' := SatisfiesM_StateT_eq.mp h diff --git a/Batteries/Data/Array/Basic.lean b/Batteries/Data/Array/Basic.lean index 3f05693926..9164b1219e 100644 --- a/Batteries/Data/Array/Basic.lean +++ b/Batteries/Data/Array/Basic.lean @@ -46,7 +46,7 @@ considered. protected def minD [ord : Ord α] (xs : Array α) (d : α) (start := 0) (stop := xs.size) : α := if h: start < xs.size ∧ start < stop then - xs.minWith (xs.get ⟨start, h.left⟩) (start + 1) stop + xs.minWith xs[start] (start + 1) stop else d @@ -60,7 +60,7 @@ considered. protected def min? [ord : Ord α] (xs : Array α) (start := 0) (stop := xs.size) : Option α := if h : start < xs.size ∧ start < stop then - some $ xs.minD (xs.get ⟨start, h.left⟩) start stop + some $ xs.minD xs[start] start stop else none @@ -135,48 +135,13 @@ A proof by `get_elem_tactic` is provided as a default argument for `h`. This will perform the update destructively provided that `a` has a reference count of 1 when called. -/ abbrev setN (a : Array α) (i : Nat) (x : α) (h : i < a.size := by get_elem_tactic) : Array α := - a.set ⟨i, h⟩ x + a.set i x -/-- -`swapN a i j hi hj` swaps two `Nat` indexed entries in an `Array α`. -Uses `get_elem_tactic` to supply a proof that the indices are in range. -`hi` and `hj` are both given a default argument `by get_elem_tactic`. -This will perform the update destructively provided that `a` has a reference count of 1 when called. --/ -abbrev swapN (a : Array α) (i j : Nat) - (hi : i < a.size := by get_elem_tactic) (hj : j < a.size := by get_elem_tactic) : Array α := - Array.swap a ⟨i,hi⟩ ⟨j, hj⟩ - -/-- -`swapAtN a i h x` swaps the entry with index `i : Nat` in the vector for a new entry `x`. -The old entry is returned alongwith the modified vector. -Automatically generates proof of `i < a.size` with `get_elem_tactic` where feasible. --/ -abbrev swapAtN (a : Array α) (i : Nat) (x : α) (h : i < a.size := by get_elem_tactic) : - α × Array α := swapAt a ⟨i,h⟩ x +@[deprecated (since := "2024-11-24")] alias swapN := swap -/-- -`eraseIdxN a i h` Removes the element at position `i` from a vector of length `n`. -`h : i < a.size` has a default argument `by get_elem_tactic` which tries to supply a proof -that the index is valid. -This function takes worst case O(n) time because it has to backshift all elements at positions -greater than i. --/ -abbrev eraseIdxN (a : Array α) (i : Nat) (h : i < a.size := by get_elem_tactic) : Array α := - a.feraseIdx ⟨i, h⟩ - -/-- -Remove the element at a given index from an array, panics if index is out of bounds. --/ -def eraseIdx! (a : Array α) (i : Nat) : Array α := - if h : i < a.size then - a.feraseIdx ⟨i, h⟩ - else - have : Inhabited (Array α) := ⟨a⟩ - panic! s!"index {i} out of bounds" +@[deprecated (since := "2024-11-24")] alias swapAtN := swapAt -/-- `finRange n` is the array of all elements of `Fin n` in order. -/ -protected def finRange (n : Nat) : Array (Fin n) := ofFn fun i => i +@[deprecated (since := "2024-11-20")] alias eraseIdxN := eraseIdx end Array @@ -204,7 +169,7 @@ subarray, or `none` if the subarray is empty. def popHead? (as : Subarray α) : Option (α × Subarray α) := if h : as.start < as.stop then - let head := as.array.get ⟨as.start, Nat.lt_of_lt_of_le h as.stop_le_array_size⟩ + let head := as.array[as.start]'(Nat.lt_of_lt_of_le h as.stop_le_array_size) let tail := { as with start := as.start + 1 diff --git a/Batteries/Data/Array/Lemmas.lean b/Batteries/Data/Array/Lemmas.lean index 7022ef1cc2..9bfa7c43d0 100644 --- a/Batteries/Data/Array/Lemmas.lean +++ b/Batteries/Data/Array/Lemmas.lean @@ -23,65 +23,9 @@ theorem forIn_eq_forIn_toList [Monad m] /-! ### zipWith / zip -/ -theorem toList_zipWith (f : α → β → γ) (as : Array α) (bs : Array β) : - (as.zipWith bs f).toList = as.toList.zipWith f bs.toList := by - let rec loop : ∀ (i : Nat) cs, i ≤ as.size → i ≤ bs.size → - (zipWithAux f as bs i cs).toList = - cs.toList ++ (as.toList.drop i).zipWith f (bs.toList.drop i) := by - intro i cs hia hib - unfold zipWithAux - by_cases h : i = as.size ∨ i = bs.size - case pos => - have : ¬(i < as.size) ∨ ¬(i < bs.size) := by - cases h <;> simp_all only [Nat.not_lt, Nat.le_refl, true_or, or_true] - -- Cleaned up aesop output below - simp_all only [Nat.not_lt] - cases h <;> [(cases this); (cases this)] - · simp_all only [Nat.le_refl, Nat.lt_irrefl, dite_false, List.drop_length, - List.zipWith_nil_left, List.append_nil] - · simp_all only [Nat.le_refl, Nat.lt_irrefl, dite_false, List.drop_length, - List.zipWith_nil_left, List.append_nil] - · simp_all only [Nat.le_refl, Nat.lt_irrefl, dite_false, List.drop_length, - List.zipWith_nil_right, List.append_nil] - split <;> simp_all only [Nat.not_lt] - · simp_all only [Nat.le_refl, Nat.lt_irrefl, dite_false, List.drop_length, - List.zipWith_nil_right, List.append_nil] - split <;> simp_all only [Nat.not_lt] - case neg => - rw [not_or] at h - have has : i < as.size := Nat.lt_of_le_of_ne hia h.1 - have hbs : i < bs.size := Nat.lt_of_le_of_ne hib h.2 - simp only [has, hbs, dite_true] - rw [loop (i+1) _ has hbs, Array.push_toList] - have h₁ : [f as[i] bs[i]] = List.zipWith f [as[i]] [bs[i]] := rfl - let i_as : Fin as.toList.length := ⟨i, has⟩ - let i_bs : Fin bs.toList.length := ⟨i, hbs⟩ - rw [h₁, List.append_assoc] - congr - rw [← List.zipWith_append (h := by simp), getElem_eq_getElem_toList, - getElem_eq_getElem_toList] - show List.zipWith f (as.toList[i_as] :: List.drop (i_as + 1) as.toList) - ((List.get bs.toList i_bs) :: List.drop (i_bs + 1) bs.toList) = - List.zipWith f (List.drop i as.toList) (List.drop i bs.toList) - simp only [length_toList, Fin.getElem_fin, List.getElem_cons_drop, List.get_eq_getElem] - simp [zipWith, loop 0 #[] (by simp) (by simp)] @[deprecated (since := "2024-09-09")] alias data_zipWith := toList_zipWith @[deprecated (since := "2024-08-13")] alias zipWith_eq_zipWith_data := data_zipWith -@[simp] theorem size_zipWith (as : Array α) (bs : Array β) (f : α → β → γ) : - (as.zipWith bs f).size = min as.size bs.size := by - rw [size_eq_length_toList, toList_zipWith, List.length_zipWith] - -theorem toList_zip (as : Array α) (bs : Array β) : - (as.zip bs).toList = as.toList.zip bs.toList := - toList_zipWith Prod.mk as bs -@[deprecated (since := "2024-09-09")] alias data_zip := toList_zip -@[deprecated (since := "2024-08-13")] alias zip_eq_zip_data := data_zip - -@[simp] theorem size_zip (as : Array α) (bs : Array β) : - (as.zip bs).size = min as.size bs.size := - as.size_zipWith bs Prod.mk - /-! ### filter -/ theorem size_filter_le (p : α → Bool) (l : Array α) : @@ -120,12 +64,9 @@ where @[simp] proof_wanted toList_erase [BEq α] {l : Array α} {a : α} : (l.erase a).toList = l.toList.erase a -@[simp] theorem eraseIdx!_eq_eraseIdx (a : Array α) (i : Nat) : - a.eraseIdx! i = a.eraseIdx i := rfl - -@[simp] theorem size_eraseIdx (a : Array α) (i : Nat) : - (a.eraseIdx i).size = if i < a.size then a.size-1 else a.size := by - simp only [eraseIdx]; split; simp; rfl +@[simp] theorem size_eraseIdxIfInBounds (a : Array α) (i : Nat) : + (a.eraseIdxIfInBounds i).size = if i < a.size then a.size-1 else a.size := by + simp only [eraseIdxIfInBounds]; split; simp; rfl /-! ### set -/ @@ -133,128 +74,143 @@ theorem size_set! (a : Array α) (i v) : (a.set! i v).size = a.size := by simp /-! ### map -/ -theorem mapM_empty [Monad m] (f : α → m β) : mapM f #[] = pure #[] := by - rw [mapM, mapM.map]; rfl - -theorem map_empty (f : α → β) : map f #[] = #[] := mapM_empty f - /-! ### mem -/ theorem mem_singleton : a ∈ #[b] ↔ a = b := by simp -/-! ### append -/ - -alias append_empty := append_nil - -alias empty_append := nil_append - /-! ### insertAt -/ -private theorem size_insertAt_loop (as : Array α) (i : Fin (as.size+1)) (j : Fin bs.size) : - (insertAt.loop as i bs j).size = bs.size := by - unfold insertAt.loop +@[simp] private theorem size_insertIdx_loop (as : Array α) (i : Nat) (j : Fin as.size) : + (insertIdx.loop i as j).size = as.size := by + unfold insertIdx.loop split - · rw [size_insertAt_loop, size_swap] + · rw [size_insertIdx_loop, size_swap] · rfl -@[simp] theorem size_insertAt (as : Array α) (i : Fin (as.size+1)) (v : α) : - (as.insertAt i v).size = as.size + 1 := by - rw [insertAt, size_insertAt_loop, size_push] - -private theorem get_insertAt_loop_lt (as : Array α) (i : Fin (as.size+1)) (j : Fin bs.size) - (k) (hk : k < (insertAt.loop as i bs j).size) (h : k < i) : - (insertAt.loop as i bs j)[k] = bs[k]'(size_insertAt_loop .. ▸ hk) := by - unfold insertAt.loop - split - · have h1 : k ≠ j - 1 := by omega - have h2 : k ≠ j := by omega - rw [get_insertAt_loop_lt, getElem_swap, if_neg h1, if_neg h2] - exact h +@[simp] theorem size_insertIdx (as : Array α) (i : Nat) (h : i ≤ as.size) (v : α) : + (as.insertIdx i v).size = as.size + 1 := by + rw [insertIdx, size_insertIdx_loop, size_push] + +@[deprecated size_insertIdx (since := "2024-11-20")] alias size_insertAt := size_insertIdx + +theorem getElem_insertIdx_loop_lt {as : Array α} {i : Nat} {j : Fin as.size} {k : Nat} {h} + (w : k < i) : + (insertIdx.loop i as j)[k] = as[k]'(by simpa using h) := by + unfold insertIdx.loop + split <;> rename_i h₁ + · simp only + rw [getElem_insertIdx_loop_lt w] + rw [getElem_swap] + split <;> rename_i h₂ + · simp_all + omega + · split <;> rename_i h₃ + · omega + · simp_all · rfl -private theorem get_insertAt_loop_gt (as : Array α) (i : Fin (as.size+1)) (j : Fin bs.size) - (k) (hk : k < (insertAt.loop as i bs j).size) (hgt : j < k) : - (insertAt.loop as i bs j)[k] = bs[k]'(size_insertAt_loop .. ▸ hk) := by - unfold insertAt.loop - split - · have h1 : k ≠ j - 1 := by omega - have h2 : k ≠ j := by omega - rw [get_insertAt_loop_gt, getElem_swap, if_neg h1, if_neg h2] - exact Nat.lt_of_le_of_lt (Nat.pred_le _) hgt - · rfl - -private theorem get_insertAt_loop_eq (as : Array α) (i : Fin (as.size+1)) (j : Fin bs.size) - (k) (hk : k < (insertAt.loop as i bs j).size) (heq : i = k) (h : i.val ≤ j.val) : - (insertAt.loop as i bs j)[k] = bs[j] := by - unfold insertAt.loop - split - · next h => - rw [get_insertAt_loop_eq, Fin.getElem_fin, getElem_swap, if_pos rfl] - exact heq - exact Nat.le_pred_of_lt h - · congr; omega - -private theorem get_insertAt_loop_gt_le (as : Array α) (i : Fin (as.size+1)) (j : Fin bs.size) - (k) (hk : k < (insertAt.loop as i bs j).size) (hgt : i < k) (hle : k ≤ j) : - (insertAt.loop as i bs j)[k] = bs[k-1] := by - unfold insertAt.loop - split - · next h => - if h0 : k = j then - cases h0 - have h1 : j.val ≠ j - 1 := by omega - rw [get_insertAt_loop_gt, getElem_swap, if_neg h1, if_pos rfl]; rfl - exact Nat.pred_lt_of_lt hgt - else - have h1 : k - 1 ≠ j - 1 := by omega - have h2 : k - 1 ≠ j := by omega - rw [get_insertAt_loop_gt_le, getElem_swap, if_neg h1, if_neg h2] - apply Nat.le_of_lt_add_one - rw [Nat.sub_one_add_one] - exact Nat.lt_of_le_of_ne hle h0 - exact Nat.not_eq_zero_of_lt h - exact hgt - · next h => - absurd h - exact Nat.lt_of_lt_of_le hgt hle - -theorem getElem_insertAt_lt (as : Array α) (i : Fin (as.size+1)) (v : α) - (k) (hlt : k < i.val) {hk : k < (as.insertAt i v).size} {hk' : k < as.size} : - (as.insertAt i v)[k] = as[k] := by - simp only [insertAt] - rw [get_insertAt_loop_lt, getElem_push, dif_pos hk'] - exact hlt - -theorem getElem_insertAt_gt (as : Array α) (i : Fin (as.size+1)) (v : α) - (k) (hgt : k > i.val) {hk : k < (as.insertAt i v).size} {hk' : k - 1 < as.size} : - (as.insertAt i v)[k] = as[k - 1] := by - simp only [insertAt] - rw [get_insertAt_loop_gt_le, getElem_push, dif_pos hk'] - exact hgt - rw [size_insertAt] at hk - exact Nat.le_of_lt_succ hk - -theorem getElem_insertAt_eq (as : Array α) (i : Fin (as.size+1)) (v : α) - (k) (heq : i.val = k) {hk : k < (as.insertAt i v).size} : - (as.insertAt i v)[k] = v := by - simp only [insertAt] - rw [get_insertAt_loop_eq, Fin.getElem_fin, getElem_push_eq] - exact heq - exact Nat.le_of_lt_succ i.is_lt - -/-! ### ofFn -/ - -@[simp] theorem toList_ofFn (f : Fin n → α) : (ofFn f).toList = List.ofFn f := by - apply List.ext_getElem <;> simp - -/-! ### finRange -/ - -@[simp] theorem size_finRange (n) : (Array.finRange n).size = n := by - simp [Array.finRange] - -@[simp] theorem getElem_finRange (n i) (h : i < (Array.finRange n).size) : - (Array.finRange n)[i] = ⟨i, size_finRange n ▸ h⟩ := by - simp [Array.finRange] - -@[simp] theorem toList_finRange (n) : (Array.finRange n).toList = List.finRange n := by - simp [Array.finRange, List.finRange] +theorem getElem_insertIdx_loop_eq {as : Array α} {i : Nat} {j : Nat} {hj : j < as.size} {h} : + (insertIdx.loop i as ⟨j, hj⟩)[i] = if i ≤ j then as[j] else as[i]'(by simpa using h) := by + unfold insertIdx.loop + split <;> rename_i h₁ + · simp at h₁ + have : j - 1 < j := by omega + rw [getElem_insertIdx_loop_eq] + rw [getElem_swap] + simp + split <;> rename_i h₂ + · rw [if_pos (by omega)] + · omega + · simp at h₁ + by_cases h' : i = j + · simp [h'] + · have t : ¬ i ≤ j := by omega + simp [t] + +theorem getElem_insertIdx_loop_gt {as : Array α} {i : Nat} {j : Nat} {hj : j < as.size} + {k : Nat} {h} (w : i < k) : + (insertIdx.loop i as ⟨j, hj⟩)[k] = + if k ≤ j then as[k-1]'(by simp at h; omega) else as[k]'(by simpa using h) := by + unfold insertIdx.loop + split <;> rename_i h₁ + · simp only + simp only at h₁ + have : j - 1 < j := by omega + rw [getElem_insertIdx_loop_gt w] + rw [getElem_swap] + split <;> rename_i h₂ + · rw [if_neg (by omega), if_neg (by omega)] + have t : k ≤ j := by omega + simp [t] + · rw [getElem_swap] + rw [if_neg (by omega)] + split <;> rename_i h₃ + · simp [h₃] + · have t : ¬ k ≤ j := by omega + simp [t] + · simp only at h₁ + have t : ¬ k ≤ j := by omega + simp [t] + +theorem getElem_insertIdx_loop {as : Array α} {i : Nat} {j : Nat} {hj : j < as.size} {k : Nat} {h} : + (insertIdx.loop i as ⟨j, hj⟩)[k] = + if h₁ : k < i then + as[k]'(by simpa using h) + else + if h₂ : k = i then + if i ≤ j then as[j] else as[i]'(by simpa [h₂] using h) + else + if k ≤ j then as[k-1]'(by simp at h; omega) else as[k]'(by simpa using h) := by + split <;> rename_i h₁ + · rw [getElem_insertIdx_loop_lt h₁] + · split <;> rename_i h₂ + · subst h₂ + rw [getElem_insertIdx_loop_eq] + · rw [getElem_insertIdx_loop_gt (by omega)] + +theorem getElem_insertIdx (as : Array α) (i : Nat) (h : i ≤ as.size) (v : α) + (k) (h' : k < (as.insertIdx i v).size) : + (as.insertIdx i v)[k] = + if h₁ : k < i then + as[k]'(by omega) + else + if h₂ : k = i then + v + else + as[k - 1]'(by simp at h'; omega) := by + unfold insertIdx + rw [getElem_insertIdx_loop] + simp only [size_insertIdx] at h' + replace h' : k ≤ as.size := by omega + simp only [getElem_push, h, ↓reduceIte, Nat.lt_irrefl, ↓reduceDIte, h', dite_eq_ite] + split <;> rename_i h₁ + · rw [dif_pos (by omega)] + · split <;> rename_i h₂ + · simp [h₂] + · split <;> rename_i h₃ + · rfl + · omega + +theorem getElem_insertIdx_lt (as : Array α) (i : Nat) (h : i ≤ as.size) (v : α) + (k) (h' : k < (as.insertIdx i v).size) (h : k < i) : + (as.insertIdx i v)[k] = as[k] := by + simp [getElem_insertIdx, h] + +@[deprecated getElem_insertIdx_lt (since := "2024-11-20")] alias getElem_insertAt_lt := +getElem_insertIdx_lt + +theorem getElem_insertIdx_eq (as : Array α) (i : Nat) (h : i ≤ as.size) (v : α) : + (as.insertIdx i v)[i]'(by simp; omega) = v := by + simp [getElem_insertIdx, h] + +@[deprecated getElem_insertIdx_eq (since := "2024-11-20")] alias getElem_insertAt_eq := +getElem_insertIdx_eq + +theorem getElem_insertIdx_gt (as : Array α) (i : Nat) (h : i ≤ as.size) (v : α) + (k) (h' : k < (as.insertIdx i v).size) (h : i < k) : + (as.insertIdx i v)[k] = as[k-1]'(by simp at h'; omega) := by + rw [getElem_insertIdx] + rw [dif_neg (by omega), dif_neg (by omega)] + +@[deprecated getElem_insertIdx_gt (since := "2024-11-20")] alias getElem_insertAt_gt := +getElem_insertIdx_gt diff --git a/Batteries/Data/Array/Merge.lean b/Batteries/Data/Array/Merge.lean index 70034111ad..7f26fd0c3f 100644 --- a/Batteries/Data/Array/Merge.lean +++ b/Batteries/Data/Array/Merge.lean @@ -83,7 +83,7 @@ set_option linter.unusedVariables.funArgs false in `f ⋯ (f (f x₁ x₂) x₃) ⋯ xₙ`. -/ def mergeAdjacentDups [eq : BEq α] (f : α → α → α) (xs : Array α) : Array α := - if h : 0 < xs.size then go (mkEmpty xs.size) 1 (xs.get ⟨0, h⟩) else xs + if h : 0 < xs.size then go (mkEmpty xs.size) 1 xs[0] else xs where /-- Auxiliary definition for `mergeAdjacentDups`. -/ go (acc : Array α) (i : Nat) (hd : α) := diff --git a/Batteries/Data/Array/Monadic.lean b/Batteries/Data/Array/Monadic.lean index 934111e131..ba297a9f70 100644 --- a/Batteries/Data/Array/Monadic.lean +++ b/Batteries/Data/Array/Monadic.lean @@ -153,7 +153,7 @@ theorem SatisfiesM_mapIdxM [Monad m] [LawfulMonad m] (as : Array α) (f : Nat (hs : ∀ i, motive i.1 → SatisfiesM (p i · ∧ motive (i + 1)) (f i as[i])) : SatisfiesM (fun arr => motive as.size ∧ ∃ eq : arr.size = as.size, ∀ i h, p ⟨i, h⟩ arr[i]) - (Array.mapIdxM as f) := + (as.mapIdxM f) := SatisfiesM_mapFinIdxM as (fun i => f i) motive h0 p hs theorem size_modifyM [Monad m] [LawfulMonad m] (a : Array α) (i : Nat) (f : α → m α) : diff --git a/Batteries/Data/Array/OfFn.lean b/Batteries/Data/Array/OfFn.lean index e02be7cba1..5233fd1f96 100644 --- a/Batteries/Data/Array/OfFn.lean +++ b/Batteries/Data/Array/OfFn.lean @@ -11,8 +11,4 @@ namespace Array /-! ### ofFn -/ -@[simp] -theorem toList_ofFn (f : Fin n → α) : (ofFn f).toList = List.ofFn f := by - apply ext_getElem <;> simp - end Array diff --git a/Batteries/Data/Array/Pairwise.lean b/Batteries/Data/Array/Pairwise.lean index 82ace9609f..498c070540 100644 --- a/Batteries/Data/Array/Pairwise.lean +++ b/Batteries/Data/Array/Pairwise.lean @@ -20,7 +20,7 @@ that `as` is strictly sorted and `as.Pairwise (· ≤ ·)` asserts that `as` is def Pairwise (R : α → α → Prop) (as : Array α) : Prop := as.toList.Pairwise R theorem pairwise_iff_get {as : Array α} : as.Pairwise R ↔ - ∀ (i j : Fin as.size), i < j → R (as.get i) (as.get j) := by + ∀ (i j : Fin as.size), i < j → R (as.get i i.2) (as.get j j.2) := by unfold Pairwise; simp [List.pairwise_iff_get, getElem_fin_eq_getElem_toList] theorem pairwise_iff_getElem {as : Array α} : as.Pairwise R ↔ diff --git a/Batteries/Data/BinaryHeap.lean b/Batteries/Data/BinaryHeap.lean index 29a273a9d0..4795be8352 100644 --- a/Batteries/Data/BinaryHeap.lean +++ b/Batteries/Data/BinaryHeap.lean @@ -67,9 +67,9 @@ def heapifyUp (lt : α → α → Bool) (a : Vector α sz) (i : Fin sz) : match i with | ⟨0, _⟩ => a | ⟨i'+1, hi⟩ => - let j := ⟨i'/2, by get_elem_tactic⟩ + let j := i'/2 if lt a[j] a[i] then - heapifyUp lt (a.swap i j) j + heapifyUp lt (a.swap i j) ⟨j, by get_elem_tactic⟩ else a /-- `O(1)`. Build a new empty heap. -/ @@ -88,7 +88,7 @@ def size (self : BinaryHeap α lt) : Nat := self.1.size def vector (self : BinaryHeap α lt) : Vector α self.size := ⟨self.1, rfl⟩ /-- `O(1)`. Get an element in the heap by index. -/ -def get (self : BinaryHeap α lt) (i : Fin self.size) : α := self.1.get i +def get (self : BinaryHeap α lt) (i : Fin self.size) : α := self.1[i]'(i.2) /-- `O(log n)`. Insert an element into a `BinaryHeap`, preserving the max-heap property. -/ def insert (self : BinaryHeap α lt) (x : α) : BinaryHeap α lt where @@ -107,7 +107,7 @@ def popMax (self : BinaryHeap α lt) : BinaryHeap α lt := if h0 : self.size = 0 then self else have hs : self.size - 1 < self.size := Nat.pred_lt h0 have h0 : 0 < self.size := Nat.zero_lt_of_ne_zero h0 - let v := self.vector.swap ⟨_, h0⟩ ⟨_, hs⟩ |>.pop + let v := self.vector.swap _ _ h0 hs |>.pop if h : 0 < self.size - 1 then ⟨heapifyDown lt v ⟨0, h⟩ |>.toArray⟩ else @@ -136,7 +136,7 @@ def insertExtractMax (self : BinaryHeap α lt) (x : α) : α × BinaryHeap α lt | none => (x, self) | some m => if lt x m then - let v := self.vector.set ⟨0, size_pos_of_max e⟩ x + let v := self.vector.set 0 x (size_pos_of_max e) (m, ⟨heapifyDown lt v ⟨0, size_pos_of_max e⟩ |>.toArray⟩) else (x, self) @@ -145,7 +145,7 @@ def replaceMax (self : BinaryHeap α lt) (x : α) : Option α × BinaryHeap α l match e : self.max with | none => (none, ⟨self.vector.push x |>.toArray⟩) | some m => - let v := self.vector.set ⟨0, size_pos_of_max e⟩ x + let v := self.vector.set 0 x (size_pos_of_max e) (some m, ⟨heapifyDown lt v ⟨0, size_pos_of_max e⟩ |>.toArray⟩) /-- `O(log n)`. Replace the value at index `i` by `x`. Assumes that `x ≤ self.get i`. -/ diff --git a/Batteries/Data/ByteArray.lean b/Batteries/Data/ByteArray.lean index 6a95a241aa..86a495e2df 100644 --- a/Batteries/Data/ByteArray.lean +++ b/Batteries/Data/ByteArray.lean @@ -15,7 +15,7 @@ theorem getElem_eq_data_getElem (a : ByteArray) (h : i < a.size) : a[i] = a.data /-! ### uget/uset -/ @[simp] theorem uset_eq_set (a : ByteArray) {i : USize} (h : i.toNat < a.size) (v : UInt8) : - a.uset i v h = a.set ⟨i.toNat, h⟩ v := rfl + a.uset i v h = a.set i.toNat v := rfl /-! ### empty -/ @@ -45,7 +45,7 @@ theorem get_push_lt (a : ByteArray) (x : UInt8) (i : Nat) (h : i < a.size) : /-! ### set -/ @[simp] theorem data_set (a : ByteArray) (i : Fin a.size) (v : UInt8) : - (a.set i v).data = a.data.set i v := rfl + (a.set i v).data = a.data.set i v i.isLt := rfl @[deprecated (since := "2024-08-13")] alias set_data := data_set @[simp] theorem size_set (a : ByteArray) (i : Fin a.size) (v : UInt8) : @@ -60,7 +60,7 @@ theorem get_set_ne (a : ByteArray) (i : Fin a.size) (v : UInt8) (hj : j < a.size Array.get_set_ne (h:=h) .. theorem set_set (a : ByteArray) (i : Fin a.size) (v v' : UInt8) : - (a.set i v).set ⟨i, by simp [i.2]⟩ v' = a.set i v' := + (a.set i v).set i v' = a.set i v' := ByteArray.ext <| Array.set_set .. /-! ### copySlice -/ @@ -132,7 +132,7 @@ def ofFn (f : Fin n → UInt8) : ByteArray where simp [get, Fin.cast] @[simp] theorem getElem_ofFn (f : Fin n → UInt8) (i) (h : i < (ofFn f).size) : - (ofFn f)[i] = f ⟨i, size_ofFn f ▸ h⟩ := get_ofFn .. + (ofFn f)[i] = f ⟨i, size_ofFn f ▸ h⟩ := get_ofFn f ⟨i, h⟩ private def ofFnAux (f : Fin n → UInt8) : ByteArray := go 0 (mkEmpty n) where go (i : Nat) (acc : ByteArray) : ByteArray := diff --git a/Batteries/Data/Fin/Basic.lean b/Batteries/Data/Fin/Basic.lean index f1357f50b0..f63e38ab37 100644 --- a/Batteries/Data/Fin/Basic.lean +++ b/Batteries/Data/Fin/Basic.lean @@ -17,57 +17,3 @@ alias enum := Array.finRange @[deprecated (since := "2024-11-15")] alias list := List.finRange - -/-- -Folds a monadic function over `Fin n` from left to right: -``` -Fin.foldlM n f x₀ = do - let x₁ ← f x₀ 0 - let x₂ ← f x₁ 1 - ... - let xₙ ← f xₙ₋₁ (n-1) - pure xₙ -``` --/ -@[inline] def foldlM [Monad m] (n) (f : α → Fin n → m α) (init : α) : m α := loop init 0 where - /-- - Inner loop for `Fin.foldlM`. - ``` - Fin.foldlM.loop n f xᵢ i = do - let xᵢ₊₁ ← f xᵢ i - ... - let xₙ ← f xₙ₋₁ (n-1) - pure xₙ - ``` - -/ - loop (x : α) (i : Nat) : m α := do - if h : i < n then f x ⟨i, h⟩ >>= (loop · (i+1)) else pure x - termination_by n - i - -/-- -Folds a monadic function over `Fin n` from right to left: -``` -Fin.foldrM n f xₙ = do - let xₙ₋₁ ← f (n-1) xₙ - let xₙ₋₂ ← f (n-2) xₙ₋₁ - ... - let x₀ ← f 0 x₁ - pure x₀ -``` --/ -@[inline] def foldrM [Monad m] (n) (f : Fin n → α → m α) (init : α) : m α := - loop ⟨n, Nat.le_refl n⟩ init where - /-- - Inner loop for `Fin.foldrM`. - ``` - Fin.foldrM.loop n f i xᵢ = do - let xᵢ₋₁ ← f (i-1) xᵢ - ... - let x₁ ← f 1 x₂ - let x₀ ← f 0 x₁ - pure x₀ - ``` - -/ - loop : {i // i ≤ n} → α → m α - | ⟨0, _⟩, x => pure x - | ⟨i+1, h⟩, x => f ⟨i, h⟩ x >>= loop ⟨i, Nat.le_of_lt h⟩ diff --git a/Batteries/Data/Fin/Lemmas.lean b/Batteries/Data/Fin/Lemmas.lean index 90a574cf2c..ddc7bbf1cf 100644 --- a/Batteries/Data/Fin/Lemmas.lean +++ b/Batteries/Data/Fin/Lemmas.lean @@ -13,139 +13,3 @@ attribute [norm_cast] val_last /-! ### clamp -/ @[simp] theorem coe_clamp (n m : Nat) : (clamp n m : Nat) = min n m := rfl - -/-! ### foldlM -/ - -theorem foldlM_loop_lt [Monad m] (f : α → Fin n → m α) (x) (h : i < n) : - foldlM.loop n f x i = f x ⟨i, h⟩ >>= (foldlM.loop n f . (i+1)) := by - rw [foldlM.loop, dif_pos h] - -theorem foldlM_loop_eq [Monad m] (f : α → Fin n → m α) (x) : foldlM.loop n f x n = pure x := by - rw [foldlM.loop, dif_neg (Nat.lt_irrefl _)] - -theorem foldlM_loop [Monad m] (f : α → Fin (n+1) → m α) (x) (h : i < n+1) : - foldlM.loop (n+1) f x i = f x ⟨i, h⟩ >>= (foldlM.loop n (fun x j => f x j.succ) . i) := by - if h' : i < n then - rw [foldlM_loop_lt _ _ h] - congr; funext - rw [foldlM_loop_lt _ _ h', foldlM_loop]; rfl - else - cases Nat.le_antisymm (Nat.le_of_lt_succ h) (Nat.not_lt.1 h') - rw [foldlM_loop_lt] - congr; funext - rw [foldlM_loop_eq, foldlM_loop_eq] -termination_by n - i - -@[simp] theorem foldlM_zero [Monad m] (f : α → Fin 0 → m α) (x) : foldlM 0 f x = pure x := - foldlM_loop_eq .. - -theorem foldlM_succ [Monad m] (f : α → Fin (n+1) → m α) (x) : - foldlM (n+1) f x = f x 0 >>= foldlM n (fun x j => f x j.succ) := foldlM_loop .. - -/-! ### foldrM -/ - -theorem foldrM_loop_zero [Monad m] (f : Fin n → α → m α) (x) : - foldrM.loop n f ⟨0, Nat.zero_le _⟩ x = pure x := by - rw [foldrM.loop] - -theorem foldrM_loop_succ [Monad m] (f : Fin n → α → m α) (x) (h : i < n) : - foldrM.loop n f ⟨i+1, h⟩ x = f ⟨i, h⟩ x >>= foldrM.loop n f ⟨i, Nat.le_of_lt h⟩ := by - rw [foldrM.loop] - -theorem foldrM_loop [Monad m] [LawfulMonad m] (f : Fin (n+1) → α → m α) (x) (h : i+1 ≤ n+1) : - foldrM.loop (n+1) f ⟨i+1, h⟩ x = - foldrM.loop n (fun j => f j.succ) ⟨i, Nat.le_of_succ_le_succ h⟩ x >>= f 0 := by - induction i generalizing x with - | zero => - rw [foldrM_loop_zero, foldrM_loop_succ, pure_bind] - conv => rhs; rw [←bind_pure (f 0 x)] - congr; funext; exact foldrM_loop_zero .. - | succ i ih => - rw [foldrM_loop_succ, foldrM_loop_succ, bind_assoc] - congr; funext; exact ih .. - -@[simp] theorem foldrM_zero [Monad m] (f : Fin 0 → α → m α) (x) : foldrM 0 f x = pure x := - foldrM_loop_zero .. - -theorem foldrM_succ [Monad m] [LawfulMonad m] (f : Fin (n+1) → α → m α) (x) : - foldrM (n+1) f x = foldrM n (fun i => f i.succ) x >>= f 0 := foldrM_loop .. - -/-! ### foldl -/ - -theorem foldl_loop_lt (f : α → Fin n → α) (x) (h : i < n) : - foldl.loop n f x i = foldl.loop n f (f x ⟨i, h⟩) (i+1) := by - rw [foldl.loop, dif_pos h] - -theorem foldl_loop_eq (f : α → Fin n → α) (x) : foldl.loop n f x n = x := by - rw [foldl.loop, dif_neg (Nat.lt_irrefl _)] - -theorem foldl_loop (f : α → Fin (n+1) → α) (x) (h : i < n+1) : - foldl.loop (n+1) f x i = foldl.loop n (fun x j => f x j.succ) (f x ⟨i, h⟩) i := by - if h' : i < n then - rw [foldl_loop_lt _ _ h] - rw [foldl_loop_lt _ _ h', foldl_loop]; rfl - else - cases Nat.le_antisymm (Nat.le_of_lt_succ h) (Nat.not_lt.1 h') - rw [foldl_loop_lt] - rw [foldl_loop_eq, foldl_loop_eq] - -@[simp] theorem foldl_zero (f : α → Fin 0 → α) (x) : foldl 0 f x = x := - foldl_loop_eq .. - -theorem foldl_succ (f : α → Fin (n+1) → α) (x) : - foldl (n+1) f x = foldl n (fun x i => f x i.succ) (f x 0) := - foldl_loop .. - -theorem foldl_succ_last (f : α → Fin (n+1) → α) (x) : - foldl (n+1) f x = f (foldl n (f · ·.castSucc) x) (last n) := by - rw [foldl_succ] - induction n generalizing x with - | zero => simp [foldl_succ, Fin.last] - | succ n ih => rw [foldl_succ, ih (f · ·.succ), foldl_succ]; simp [succ_castSucc] - -theorem foldl_eq_foldlM (f : α → Fin n → α) (x) : - foldl n f x = foldlM (m:=Id) n f x := by - induction n generalizing x <;> simp [foldl_succ, foldlM_succ, *] - -/-! ### foldr -/ - -theorem foldr_loop_zero (f : Fin n → α → α) (x) : - foldr.loop n f ⟨0, Nat.zero_le _⟩ x = x := by - rw [foldr.loop] - -theorem foldr_loop_succ (f : Fin n → α → α) (x) (h : i < n) : - foldr.loop n f ⟨i+1, h⟩ x = foldr.loop n f ⟨i, Nat.le_of_lt h⟩ (f ⟨i, h⟩ x) := by - rw [foldr.loop] - -theorem foldr_loop (f : Fin (n+1) → α → α) (x) (h : i+1 ≤ n+1) : - foldr.loop (n+1) f ⟨i+1, h⟩ x = - f 0 (foldr.loop n (fun j => f j.succ) ⟨i, Nat.le_of_succ_le_succ h⟩ x) := by - induction i generalizing x <;> simp [foldr_loop_zero, foldr_loop_succ, *] - -@[simp] theorem foldr_zero (f : Fin 0 → α → α) (x) : foldr 0 f x = x := - foldr_loop_zero .. - -theorem foldr_succ (f : Fin (n+1) → α → α) (x) : - foldr (n+1) f x = f 0 (foldr n (fun i => f i.succ) x) := foldr_loop .. - -theorem foldr_succ_last (f : Fin (n+1) → α → α) (x) : - foldr (n+1) f x = foldr n (f ·.castSucc) (f (last n) x) := by - induction n generalizing x with - | zero => simp [foldr_succ, Fin.last] - | succ n ih => rw [foldr_succ, ih (f ·.succ), foldr_succ]; simp [succ_castSucc] - -theorem foldr_eq_foldrM (f : Fin n → α → α) (x) : - foldr n f x = foldrM (m:=Id) n f x := by - induction n <;> simp [foldr_succ, foldrM_succ, *] - -theorem foldl_rev (f : Fin n → α → α) (x) : - foldl n (fun x i => f i.rev x) x = foldr n f x := by - induction n generalizing x with - | zero => simp - | succ n ih => rw [foldl_succ, foldr_succ_last, ← ih]; simp [rev_succ] - -theorem foldr_rev (f : α → Fin n → α) (x) : - foldr n (fun i x => f x i.rev) x = foldl n f x := by - induction n generalizing x with - | zero => simp - | succ n ih => rw [foldl_succ_last, foldr_succ, ← ih]; simp [rev_succ] diff --git a/Batteries/Data/HashMap/Basic.lean b/Batteries/Data/HashMap/Basic.lean index de029c4276..0d1b2b1fe1 100644 --- a/Batteries/Data/HashMap/Basic.lean +++ b/Batteries/Data/HashMap/Basic.lean @@ -40,7 +40,7 @@ Note: this is marked `noncomputable` because it is only intended for specificati noncomputable def size (data : Buckets α β) : Nat := (data.1.toList.map (·.toList.length)).sum @[simp] theorem update_size (self : Buckets α β) (i d h) : - (self.update i d h).1.size = self.1.size := Array.size_uset .. + (self.update i d h).1.size = self.1.size := Array.size_uset _ _ _ h /-- Map a function over the values in the map. -/ @[specialize] def mapVal (f : α → β → γ) (self : Buckets α β) : Buckets α γ := @@ -143,11 +143,10 @@ where destroying `source` in the process. -/ go (i : Nat) (source : Array (AssocList α β)) (target : Buckets α β) : Buckets α β := if h : i < source.size then - let idx : Fin source.size := ⟨i, h⟩ - let es := source.get idx + let es := source[i] -- We remove `es` from `source` to make sure we can reuse its memory cells -- when performing es.foldl - let source := source.set idx .nil + let source := source.set i .nil let target := es.foldl reinsertAux target go (i+1) source target else target diff --git a/Batteries/Data/List/Basic.lean b/Batteries/Data/List/Basic.lean index 8dbcabb4a8..1404315159 100644 --- a/Batteries/Data/List/Basic.lean +++ b/Batteries/Data/List/Basic.lean @@ -159,32 +159,8 @@ Split a list at every occurrence of a separator element. The separators are not | [x], acc => acc.toListAppend [f x] | x :: xs, acc => go xs (acc.push x) -/-- -`insertIdx n a l` inserts `a` into the list `l` after the first `n` elements of `l` -``` -insertIdx 2 1 [1, 2, 3, 4] = [1, 2, 1, 3, 4] -``` --/ -def insertIdx (n : Nat) (a : α) : List α → List α := - modifyTailIdx (cons a) n - @[deprecated (since := "2024-10-21")] alias insertNth := insertIdx -/-- Tail-recursive version of `insertIdx`. -/ -@[inline] def insertIdxTR (n : Nat) (a : α) (l : List α) : List α := go n l #[] where - /-- Auxiliary for `insertIdxTR`: `insertIdxTR.go a n l acc = acc.toList ++ insertIdx n a l`. -/ - go : Nat → List α → Array α → List α - | 0, l, acc => acc.toListAppend (a :: l) - | _, [], acc => acc.toList - | n+1, a :: l, acc => go n l (acc.push a) - -theorem insertIdxTR_go_eq : ∀ n l, insertIdxTR.go a n l acc = acc.toList ++ insertIdx n a l - | 0, l | _+1, [] => by simp [insertIdxTR.go, insertIdx] - | n+1, a :: l => by simp [insertIdxTR.go, insertIdx, insertIdxTR_go_eq n l] - -@[csimp] theorem insertIdx_eq_insertIdxTR : @insertIdx = @insertIdxTR := by - funext α f n l; simp [insertIdxTR, insertIdxTR_go_eq] - theorem headD_eq_head? (l) (a : α) : headD l a = (head? l).getD a := by cases l <;> rfl /-- @@ -487,7 +463,7 @@ theorem sections_eq_nil_of_isEmpty : ∀ {L}, L.any isEmpty → @sections α L = cases e : L.any isEmpty <;> simp [sections_eq_nil_of_isEmpty, *] clear e; induction L with | nil => rfl | cons l L IH => ?_ simp [IH, sectionsTR.go] - rw [Array.foldl_eq_foldl_toList, Array.foldl_toList_eq_flatMap]; rfl + rw [← Array.foldl_toList, Array.foldl_toList_eq_flatMap]; rfl intros; apply Array.foldl_toList_eq_map /-- @@ -544,14 +520,6 @@ def sigmaTR {σ : α → Type _} (l₁ : List α) (l₂ : ∀ a, List (σ a)) : rw [Array.foldl_toList_eq_flatMap]; rfl intros; apply Array.foldl_toList_eq_map -/-- -`ofFn f` with `f : fin n → α` returns the list whose ith element is `f i` -``` -ofFn f = [f 0, f 1, ... , f (n - 1)] -``` --/ -def ofFn {n} (f : Fin n → α) : List α := Fin.foldr n (f · :: ·) [] - /-- `ofFnNthVal f i` returns `some (f i)` if `i < n` and `none` otherwise. -/ def ofFnNthVal {n} (f : Fin n → α) (i : Nat) : Option α := if h : i < n then some (f ⟨i, h⟩) else none @@ -1096,6 +1064,3 @@ where | a :: as, acc => match (a :: as).dropPrefix? i with | none => go as (a :: acc) | some s => (acc.reverse, s) - -/-- `finRange n` lists all elements of `Fin n` in order -/ -def finRange (n : Nat) : List (Fin n) := ofFn fun i => i diff --git a/Batteries/Data/List/FinRange.lean b/Batteries/Data/List/FinRange.lean index 432e3133af..dd6b13724d 100644 --- a/Batteries/Data/List/FinRange.lean +++ b/Batteries/Data/List/FinRange.lean @@ -7,54 +7,20 @@ import Batteries.Data.List.OfFn namespace List -@[simp] theorem length_finRange (n) : (List.finRange n).length = n := by - simp [List.finRange] - @[deprecated (since := "2024-11-19")] alias length_list := length_finRange -@[simp] theorem getElem_finRange (i : Nat) (h : i < (List.finRange n).length) : - (finRange n)[i] = Fin.cast (length_finRange n) ⟨i, h⟩ := by - simp [List.finRange] - @[deprecated (since := "2024-11-19")] alias getElem_list := getElem_finRange -@[simp] theorem finRange_zero : finRange 0 = [] := by simp [finRange, ofFn] - @[deprecated (since := "2024-11-19")] alias list_zero := finRange_zero -theorem finRange_succ (n) : finRange (n+1) = 0 :: (finRange n).map Fin.succ := by - apply List.ext_getElem; simp; intro i; cases i <;> simp - @[deprecated (since := "2024-11-19")] alias list_succ := finRange_succ -theorem finRange_succ_last (n) : - finRange (n+1) = (finRange n).map Fin.castSucc ++ [Fin.last n] := by - apply List.ext_getElem - · simp - · intros - simp only [List.finRange, List.getElem_ofFn, getElem_append, length_map, length_ofFn, - getElem_map, Fin.castSucc_mk, getElem_singleton] - split - · rfl - · next h => exact Fin.eq_last_of_not_lt h - @[deprecated (since := "2024-11-19")] alias list_succ_last := finRange_succ_last -theorem finRange_reverse (n) : (finRange n).reverse = (finRange n).map Fin.rev := by - induction n with - | zero => simp - | succ n ih => - conv => lhs; rw [finRange_succ_last] - conv => rhs; rw [finRange_succ] - rw [reverse_append, reverse_cons, reverse_nil, nil_append, singleton_append, ← map_reverse, - map_cons, ih, map_map, map_map] - congr; funext - simp [Fin.rev_succ] - @[deprecated (since := "2024-11-19")] alias list_reverse := finRange_reverse diff --git a/Batteries/Data/List/Lemmas.lean b/Batteries/Data/List/Lemmas.lean index 840940dbaf..1e02d90c98 100644 --- a/Batteries/Data/List/Lemmas.lean +++ b/Batteries/Data/List/Lemmas.lean @@ -15,26 +15,6 @@ namespace List @[simp] theorem getElem_mk {xs : List α} {i : Nat} (h : i < xs.length) : (Array.mk xs)[i] = xs[i] := rfl -/-! ### == -/ - -@[simp] theorem beq_nil_iff [BEq α] {l : List α} : (l == []) = l.isEmpty := by - cases l <;> rfl - -@[simp] theorem nil_beq_iff [BEq α] {l : List α} : ([] == l) = l.isEmpty := by - cases l <;> rfl - -@[simp] theorem cons_beq_cons [BEq α] {a b : α} {l₁ l₂ : List α} : - (a :: l₁ == b :: l₂) = (a == b && l₁ == l₂) := rfl - -theorem length_eq_of_beq [BEq α] {l₁ l₂ : List α} (h : l₁ == l₂) : l₁.length = l₂.length := - match l₁, l₂ with - | [], [] => rfl - | [], _ :: _ => by simp [beq_nil_iff] at h - | _ :: _, [] => by simp [nil_beq_iff] at h - | a :: l₁, b :: l₂ => by - simp at h - simpa using length_eq_of_beq h.2 - /-! ### next? -/ @[simp] theorem next?_nil : @next? α [] = none := rfl diff --git a/Batteries/Data/List/OfFn.lean b/Batteries/Data/List/OfFn.lean index 93214cc99b..c66846e61a 100644 --- a/Batteries/Data/List/OfFn.lean +++ b/Batteries/Data/List/OfFn.lean @@ -12,38 +12,4 @@ import Batteries.Data.Fin.Lemmas namespace List -@[simp] -theorem length_ofFn (f : Fin n → α) : (ofFn f).length = n := by - simp only [ofFn] - induction n with - | zero => simp - | succ n ih => simp [Fin.foldr_succ, ih] - -@[simp] -protected theorem getElem_ofFn (f : Fin n → α) (i : Nat) (h : i < (ofFn f).length) : - (ofFn f)[i] = f ⟨i, by simp_all⟩ := by - simp only [ofFn] - induction n generalizing i with - | zero => simp at h - | succ n ih => - match i with - | 0 => simp [Fin.foldr_succ] - | i+1 => - simp only [Fin.foldr_succ] - apply ih - simp_all - -@[simp] -protected theorem getElem?_ofFn (f : Fin n → α) (i) : (ofFn f)[i]? = ofFnNthVal f i := - if h : i < (ofFn f).length - then by - rw [getElem?_eq_getElem h, List.getElem_ofFn] - · simp only [length_ofFn] at h; simp [ofFnNthVal, h] - else by - rw [ofFnNthVal, dif_neg] <;> - simpa using h - -@[simp] theorem toArray_ofFn (f : Fin n → α) : (ofFn f).toArray = Array.ofFn f := by - ext <;> simp - end List diff --git a/Batteries/Data/MLList/Basic.lean b/Batteries/Data/MLList/Basic.lean index 1ed6d7e256..8ab11c3d80 100644 --- a/Batteries/Data/MLList/Basic.lean +++ b/Batteries/Data/MLList/Basic.lean @@ -334,7 +334,7 @@ partial def fin (n : Nat) : MLList m (Fin n) := go 0 where partial def ofArray {α : Type} (L : Array α) : MLList m α := go 0 where /-- Implementation of `MLList.ofArray`. -/ go (i : Nat) : MLList m α := - if h : i < L.size then cons (L.get ⟨i, h⟩) (thunk fun _ => go (i+1)) else nil + if h : i < L.size then cons L[i] (thunk fun _ => go (i+1)) else nil /-- Group the elements of a lazy list into chunks of a given size. If the lazy list is finite, the last chunk may be smaller (possibly even length 0). -/ diff --git a/Batteries/Data/String/Lemmas.lean b/Batteries/Data/String/Lemmas.lean index 431591ebc1..642029cdd1 100644 --- a/Batteries/Data/String/Lemmas.lean +++ b/Batteries/Data/String/Lemmas.lean @@ -573,7 +573,7 @@ theorem extract (h₁ : ValidFor l (m ++ r) it₁) (h₂ : ValidFor (m.reverse + it₁.extract it₂ = ⟨m⟩ := by cases h₁.out; cases h₂.out simp only [Iterator.extract, List.reverseAux_eq, List.reverse_append, List.reverse_reverse, - List.append_assoc, ne_eq, not_true_eq_false, decide_False, utf8Len_append, utf8Len_reverse, + List.append_assoc, ne_eq, not_true_eq_false, decide_false, utf8Len_append, utf8Len_reverse, gt_iff_lt, pos_lt_eq, Nat.not_lt.2 (Nat.le_add_left ..), Bool.or_self, Bool.false_eq_true, ↓reduceIte] simpa [Nat.add_comm] using extract_of_valid l.reverse m r diff --git a/Batteries/Data/UInt.lean b/Batteries/Data/UInt.lean index 3f9b495629..007a57d75d 100644 --- a/Batteries/Data/UInt.lean +++ b/Batteries/Data/UInt.lean @@ -10,11 +10,6 @@ import Batteries.Classes.Order @[ext] theorem UInt8.ext : {x y : UInt8} → x.toNat = y.toNat → x = y | ⟨⟨_,_⟩⟩, ⟨⟨_,_⟩⟩, rfl => rfl -@[simp] theorem UInt8.val_val_eq_toNat (x : UInt8) : x.val.val = x.toNat := rfl - -@[simp] theorem UInt8.toNat_ofNat (n) : - (no_index (OfNat.ofNat n) : UInt8).toNat = n % UInt8.size := rfl - theorem UInt8.toNat_lt (x : UInt8) : x.toNat < 2 ^ 8 := x.val.isLt @[simp] theorem UInt8.toUInt16_toNat (x : UInt8) : x.toUInt16.toNat = x.toNat := rfl @@ -23,19 +18,6 @@ theorem UInt8.toNat_lt (x : UInt8) : x.toNat < 2 ^ 8 := x.val.isLt @[simp] theorem UInt8.toUInt64_toNat (x : UInt8) : x.toUInt64.toNat = x.toNat := rfl -theorem UInt8.toNat_add (x y : UInt8) : (x + y).toNat = (x.toNat + y.toNat) % UInt8.size := rfl - -theorem UInt8.toNat_sub (x y : UInt8) : - (x - y).toNat = (UInt8.size - y.toNat + x.toNat) % UInt8.size := rfl - -theorem UInt8.toNat_mul (x y : UInt8) : (x * y).toNat = (x.toNat * y.toNat) % UInt8.size := rfl - -theorem UInt8.le_antisymm_iff {x y : UInt8} : x = y ↔ x ≤ y ∧ y ≤ x := - UInt8.ext_iff.trans Nat.le_antisymm_iff - -theorem UInt8.le_antisymm {x y : UInt8} (h1 : x ≤ y) (h2 : y ≤ x) : x = y := - UInt8.le_antisymm_iff.2 ⟨h1, h2⟩ - instance : Batteries.LawfulOrd UInt8 := .compareOfLessAndEq (fun _ => Nat.lt_irrefl _) Nat.lt_trans Nat.not_lt UInt8.le_antisymm @@ -44,11 +26,6 @@ instance : Batteries.LawfulOrd UInt8 := .compareOfLessAndEq @[ext] theorem UInt16.ext : {x y : UInt16} → x.toNat = y.toNat → x = y | ⟨⟨_,_⟩⟩, ⟨⟨_,_⟩⟩, rfl => rfl -@[simp] theorem UInt16.val_val_eq_toNat (x : UInt16) : x.val.val = x.toNat := rfl - -@[simp] theorem UInt16.toNat_ofNat (n) : - (no_index (OfNat.ofNat n) : UInt16).toNat = n % UInt16.size := rfl - theorem UInt16.toNat_lt (x : UInt16) : x.toNat < 2 ^ 16 := x.val.isLt @[simp] theorem UInt16.toUInt8_toNat (x : UInt16) : x.toUInt8.toNat = x.toNat % 2 ^ 8 := rfl @@ -57,19 +34,6 @@ theorem UInt16.toNat_lt (x : UInt16) : x.toNat < 2 ^ 16 := x.val.isLt @[simp] theorem UInt16.toUInt64_toNat (x : UInt16) : x.toUInt64.toNat = x.toNat := rfl -theorem UInt16.toNat_add (x y : UInt16) : (x + y).toNat = (x.toNat + y.toNat) % UInt16.size := rfl - -theorem UInt16.toNat_sub (x y : UInt16) : - (x - y).toNat = (UInt16.size - y.toNat + x.toNat) % UInt16.size := rfl - -theorem UInt16.toNat_mul (x y : UInt16) : (x * y).toNat = (x.toNat * y.toNat) % UInt16.size := rfl - -theorem UInt16.le_antisymm_iff {x y : UInt16} : x = y ↔ x ≤ y ∧ y ≤ x := - UInt16.ext_iff.trans Nat.le_antisymm_iff - -theorem UInt16.le_antisymm {x y : UInt16} (h1 : x ≤ y) (h2 : y ≤ x) : x = y := - UInt16.le_antisymm_iff.2 ⟨h1, h2⟩ - instance : Batteries.LawfulOrd UInt16 := .compareOfLessAndEq (fun _ => Nat.lt_irrefl _) Nat.lt_trans Nat.not_lt UInt16.le_antisymm @@ -78,11 +42,6 @@ instance : Batteries.LawfulOrd UInt16 := .compareOfLessAndEq @[ext] theorem UInt32.ext : {x y : UInt32} → x.toNat = y.toNat → x = y | ⟨⟨_,_⟩⟩, ⟨⟨_,_⟩⟩, rfl => rfl -@[simp] theorem UInt32.val_val_eq_toNat (x : UInt32) : x.val.val = x.toNat := rfl - -@[simp] theorem UInt32.toNat_ofNat (n) : - (no_index (OfNat.ofNat n) : UInt32).toNat = n % UInt32.size := rfl - theorem UInt32.toNat_lt (x : UInt32) : x.toNat < 2 ^ 32 := x.val.isLt @[simp] theorem UInt32.toUInt8_toNat (x : UInt32) : x.toUInt8.toNat = x.toNat % 2 ^ 8 := rfl @@ -91,19 +50,6 @@ theorem UInt32.toNat_lt (x : UInt32) : x.toNat < 2 ^ 32 := x.val.isLt @[simp] theorem UInt32.toUInt64_toNat (x : UInt32) : x.toUInt64.toNat = x.toNat := rfl -theorem UInt32.toNat_add (x y : UInt32) : (x + y).toNat = (x.toNat + y.toNat) % UInt32.size := rfl - -theorem UInt32.toNat_sub (x y : UInt32) : - (x - y).toNat = (UInt32.size - y.toNat + x.toNat) % UInt32.size := rfl - -theorem UInt32.toNat_mul (x y : UInt32) : (x * y).toNat = (x.toNat * y.toNat) % UInt32.size := rfl - -theorem UInt32.le_antisymm_iff {x y : UInt32} : x = y ↔ x ≤ y ∧ y ≤ x := - UInt32.ext_iff.trans Nat.le_antisymm_iff - -theorem UInt32.le_antisymm {x y : UInt32} (h1 : x ≤ y) (h2 : y ≤ x) : x = y := - UInt32.le_antisymm_iff.2 ⟨h1, h2⟩ - instance : Batteries.LawfulOrd UInt32 := .compareOfLessAndEq (fun _ => Nat.lt_irrefl _) Nat.lt_trans Nat.not_lt UInt32.le_antisymm @@ -112,11 +58,6 @@ instance : Batteries.LawfulOrd UInt32 := .compareOfLessAndEq @[ext] theorem UInt64.ext : {x y : UInt64} → x.toNat = y.toNat → x = y | ⟨⟨_,_⟩⟩, ⟨⟨_,_⟩⟩, rfl => rfl -@[simp] theorem UInt64.val_val_eq_toNat (x : UInt64) : x.val.val = x.toNat := rfl - -@[simp] theorem UInt64.toNat_ofNat (n) : - (no_index (OfNat.ofNat n) : UInt64).toNat = n % UInt64.size := rfl - theorem UInt64.toNat_lt (x : UInt64) : x.toNat < 2 ^ 64 := x.val.isLt @[simp] theorem UInt64.toUInt8_toNat (x : UInt64) : x.toUInt8.toNat = x.toNat % 2 ^ 8 := rfl @@ -125,19 +66,6 @@ theorem UInt64.toNat_lt (x : UInt64) : x.toNat < 2 ^ 64 := x.val.isLt @[simp] theorem UInt64.toUInt32_toNat (x : UInt64) : x.toUInt32.toNat = x.toNat % 2 ^ 32 := rfl -theorem UInt64.toNat_add (x y : UInt64) : (x + y).toNat = (x.toNat + y.toNat) % UInt64.size := rfl - -theorem UInt64.toNat_sub (x y : UInt64) : - (x - y).toNat = (UInt64.size - y.toNat + x.toNat) % UInt64.size := rfl - -theorem UInt64.toNat_mul (x y : UInt64) : (x * y).toNat = (x.toNat * y.toNat) % UInt64.size := rfl - -theorem UInt64.le_antisymm_iff {x y : UInt64} : x = y ↔ x ≤ y ∧ y ≤ x := - UInt64.ext_iff.trans Nat.le_antisymm_iff - -theorem UInt64.le_antisymm {x y : UInt64} (h1 : x ≤ y) (h2 : y ≤ x) : x = y := - UInt64.le_antisymm_iff.2 ⟨h1, h2⟩ - instance : Batteries.LawfulOrd UInt64 := .compareOfLessAndEq (fun _ => Nat.lt_irrefl _) Nat.lt_trans Nat.not_lt UInt64.le_antisymm @@ -146,11 +74,6 @@ instance : Batteries.LawfulOrd UInt64 := .compareOfLessAndEq @[ext] theorem USize.ext : {x y : USize} → x.toNat = y.toNat → x = y | ⟨⟨_,_⟩⟩, ⟨⟨_,_⟩⟩, rfl => rfl -@[simp] theorem USize.val_val_eq_toNat (x : USize) : x.val.val = x.toNat := rfl - -@[simp] theorem USize.toNat_ofNat (n) : - (no_index (OfNat.ofNat n) : USize).toNat = n % USize.size := rfl - theorem USize.size_eq : USize.size = 2 ^ System.Platform.numBits := by rw [USize.size] @@ -172,18 +95,5 @@ theorem USize.toNat_lt (x : USize) : x.toNat < 2 ^ System.Platform.numBits := by @[simp] theorem UInt32.toUSize_toNat (x : UInt32) : x.toUSize.toNat = x.toNat := rfl -theorem USize.toNat_add (x y : USize) : (x + y).toNat = (x.toNat + y.toNat) % USize.size := rfl - -theorem USize.toNat_sub (x y : USize) : - (x - y).toNat = (USize.size - y.toNat + x.toNat) % USize.size := rfl - -theorem USize.toNat_mul (x y : USize) : (x * y).toNat = (x.toNat * y.toNat) % USize.size := rfl - -theorem USize.le_antisymm_iff {x y : USize} : x = y ↔ x ≤ y ∧ y ≤ x := - USize.ext_iff.trans Nat.le_antisymm_iff - -theorem USize.le_antisymm {x y : USize} (h1 : x ≤ y) (h2 : y ≤ x) : x = y := - USize.le_antisymm_iff.2 ⟨h1, h2⟩ - instance : Batteries.LawfulOrd USize := .compareOfLessAndEq (fun _ => Nat.lt_irrefl _) Nat.lt_trans Nat.not_lt USize.le_antisymm diff --git a/Batteries/Data/UnionFind/Basic.lean b/Batteries/Data/UnionFind/Basic.lean index c48bb5bda1..3328834ec2 100644 --- a/Batteries/Data/UnionFind/Basic.lean +++ b/Batteries/Data/UnionFind/Basic.lean @@ -25,39 +25,35 @@ namespace UnionFind /-- Parent of a union-find node, defaults to self when the node is a root -/ def parentD (arr : Array UFNode) (i : Nat) : Nat := - if h : i < arr.size then (arr.get ⟨i, h⟩).parent else i + if h : i < arr.size then arr[i].parent else i /-- Rank of a union-find node, defaults to 0 when the node is a root -/ def rankD (arr : Array UFNode) (i : Nat) : Nat := - if h : i < arr.size then (arr.get ⟨i, h⟩).rank else 0 + if h : i < arr.size then arr[i].rank else 0 -theorem parentD_eq {arr : Array UFNode} {i} : parentD arr i.1 = (arr.get i).parent := dif_pos _ +theorem parentD_eq {arr : Array UFNode} {i} (h) : + parentD arr i = arr[i].parent := dif_pos _ -theorem parentD_eq' {arr : Array UFNode} {i} (h) : - parentD arr i = (arr.get ⟨i, h⟩).parent := dif_pos _ - -theorem rankD_eq {arr : Array UFNode} {i} : rankD arr i.1 = (arr.get i).rank := dif_pos _ - -theorem rankD_eq' {arr : Array UFNode} {i} (h) : rankD arr i = (arr.get ⟨i, h⟩).rank := dif_pos _ +theorem rankD_eq {arr : Array UFNode} {i} (h) : rankD arr i = arr[i].rank := dif_pos _ theorem parentD_of_not_lt : ¬i < arr.size → parentD arr i = i := (dif_neg ·) theorem lt_of_parentD : parentD arr i ≠ i → i < arr.size := Decidable.not_imp_comm.1 parentD_of_not_lt -theorem parentD_set {arr : Array UFNode} {x v i} : - parentD (arr.set x v) i = if x.1 = i then v.parent else parentD arr i := by +theorem parentD_set {arr : Array UFNode} {x v i h} : + parentD (arr.set x v h) i = if x = i then v.parent else parentD arr i := by rw [parentD]; simp only [Array.size_set, Array.get_eq_getElem, parentD] split · split <;> simp_all - · split <;> [(subst i; cases ‹¬_› x.2); rfl] + · split <;> [(subst i; cases ‹¬_› h); rfl] -theorem rankD_set {arr : Array UFNode} {x v i} : - rankD (arr.set x v) i = if x.1 = i then v.rank else rankD arr i := by +theorem rankD_set {arr : Array UFNode} {x v i h} : + rankD (arr.set x v h) i = if x = i then v.rank else rankD arr i := by rw [rankD]; simp only [Array.size_set, Array.get_eq_getElem, rankD] split · split <;> simp_all - · split <;> [(subst i; cases ‹¬_› x.2); rfl] + · split <;> [(subst i; cases ‹¬_› h); rfl] end UnionFind @@ -126,9 +122,8 @@ instance : EmptyCollection UnionFind := ⟨.empty⟩ /-- Parent of union-find node -/ abbrev parent (self : UnionFind) (i : Nat) : Nat := parentD self.arr i -theorem parent'_lt (self : UnionFind) (i : Fin self.size) : - (self.arr.get i).parent < self.size := by - simp only [← parentD_eq, parentD_lt, Fin.is_lt, Array.length_toList] +theorem parent'_lt (self : UnionFind) (i : Nat) (h) : self.arr[i].parent < self.size := by + simp [← parentD_eq, parentD_lt, Fin.is_lt, Array.length_toList, h] theorem parent_lt (self : UnionFind) (i : Nat) : self.parent i < self.size ↔ i < self.size := by simp only [parentD]; split <;> simp only [*, parent'_lt] @@ -139,20 +134,19 @@ abbrev rank (self : UnionFind) (i : Nat) : Nat := rankD self.arr i theorem rank_lt {self : UnionFind} {i : Nat} : self.parent i ≠ i → self.rank i < self.rank (self.parent i) := by simpa only [rank] using self.rankD_lt -theorem rank'_lt (self : UnionFind) (i : Fin self.size) : (self.arr.get i).parent ≠ i → - self.rank i < self.rank (self.arr.get i).parent := by +theorem rank'_lt (self : UnionFind) (i h) : self.arr[i].parent ≠ i → + self.rank i < self.rank (self.arr[i]).parent := by simpa only [← parentD_eq] using self.rankD_lt /-- Maximum rank of nodes in a union-find structure -/ noncomputable def rankMax (self : UnionFind) := self.arr.foldr (max ·.rank) 0 + 1 -theorem rank'_lt_rankMax (self : UnionFind) (i : Fin self.size) : - (self.arr.get i).rank < self.rankMax := by +theorem rank'_lt_rankMax (self : UnionFind) (i : Nat) (h) : (self.arr[i]).rank < self.rankMax := by let rec go : ∀ {l} {x : UFNode}, x ∈ l → x.rank ≤ List.foldr (max ·.rank) 0 l | a::l, _, List.Mem.head _ => by dsimp; apply Nat.le_max_left | a::l, _, .tail _ h => by dsimp; exact Nat.le_trans (go h) (Nat.le_max_right ..) - simp only [Array.get_eq_getElem, rankMax, Array.foldr_eq_foldr_toList] - exact Nat.lt_succ.2 <| go (self.arr.toList.get_mem i.1 i.2) + simp only [Array.get_eq_getElem, rankMax, ← Array.foldr_toList] + exact Nat.lt_succ.2 <| go (self.arr.toList.getElem_mem _) theorem rankD_lt_rankMax (self : UnionFind) (i : Nat) : rankD self.arr i < self.rankMax := by @@ -175,17 +169,17 @@ def push (self : UnionFind) : UnionFind where arr := self.arr.push ⟨self.arr.size, 0⟩ parentD_lt {i} := by simp only [Array.size_push, push_parentD]; simp only [parentD, Array.get_eq_getElem] - split <;> [exact fun _ => Nat.lt_succ_of_lt (self.parent'_lt _); exact id] + split <;> [exact fun _ => Nat.lt_succ_of_lt (self.parent'_lt ..); exact id] rankD_lt := by simp only [push_parentD, ne_eq, push_rankD]; exact self.rank_lt /-- Root of a union-find node. -/ def root (self : UnionFind) (x : Fin self.size) : Fin self.size := - let y := (self.arr.get x).parent + let y := self.arr[x.1].parent if h : y = x then x else - have := Nat.sub_lt_sub_left (self.lt_rankMax x) (self.rank'_lt _ h) - self.root ⟨y, self.parent'_lt x⟩ + have := Nat.sub_lt_sub_left (self.lt_rankMax x) (self.rank'_lt _ _ h) + self.root ⟨y, self.parent'_lt x _⟩ termination_by self.rankMax - self.rank x @[inherit_doc root] @@ -202,9 +196,9 @@ def rootD (self : UnionFind) (x : Nat) : Nat := @[nolint unusedHavesSuffices] theorem parent_root (self : UnionFind) (x : Fin self.size) : - (self.arr.get (self.root x)).parent = self.root x := by + (self.arr[(self.root x).1]).parent = self.root x := by rw [root]; split <;> [assumption; skip] - have := Nat.sub_lt_sub_left (self.lt_rankMax x) (self.rank'_lt _ ‹_›) + have := Nat.sub_lt_sub_left (self.lt_rankMax x) (self.rank'_lt _ _ ‹_›) apply parent_root termination_by self.rankMax - self.rank x @@ -231,7 +225,7 @@ theorem rootD_lt {self : UnionFind} {x : Nat} : self.rootD x < self.size ↔ x < @[nolint unusedHavesSuffices] theorem rootD_eq_self {self : UnionFind} {x : Nat} : self.rootD x = x ↔ self.parent x = x := by refine ⟨fun h => by rw [← h, parent_rootD], fun h => ?_⟩ - rw [rootD]; split <;> [rw [root, dif_pos (by rwa [parent, parentD_eq' ‹_›] at h)]; rfl] + rw [rootD]; split <;> [rw [root, dif_pos (by rwa [parent, parentD_eq ‹_›] at h)]; rfl] theorem rootD_rootD {self : UnionFind} {x : Nat} : self.rootD (self.rootD x) = self.rootD x := rootD_eq_self.2 (parent_rootD ..) @@ -271,12 +265,12 @@ structure FindAux (n : Nat) where /-- Auxiliary function for find operation -/ def findAux (self : UnionFind) (x : Fin self.size) : FindAux self.size := - let y := (self.arr.get x).parent + let y := self.arr[x.1].parent if h : y = x then ⟨self.arr, x, rfl⟩ else - have := Nat.sub_lt_sub_left (self.lt_rankMax x) (self.rank'_lt _ h) - let ⟨arr₁, root, H⟩ := self.findAux ⟨y, self.parent'_lt x⟩ + have := Nat.sub_lt_sub_left (self.lt_rankMax x) (self.rank'_lt _ _ h) + let ⟨arr₁, root, H⟩ := self.findAux ⟨y, self.parent'_lt _ x.2⟩ ⟨arr₁.modify x fun s => { s with parent := root }, root, by simp [H]⟩ termination_by self.rankMax - self.rank x @@ -286,16 +280,16 @@ theorem findAux_root {self : UnionFind} {x : Fin self.size} : rw [findAux, root] simp only [Array.length_toList, Array.get_eq_getElem, dite_eq_ite] split <;> simp only - have := Nat.sub_lt_sub_left (self.lt_rankMax x) (self.rank'_lt _ ‹_›) + have := Nat.sub_lt_sub_left (self.lt_rankMax x) (self.rank'_lt _ _ ‹_›) exact findAux_root termination_by self.rankMax - self.rank x @[nolint unusedHavesSuffices] theorem findAux_s {self : UnionFind} {x : Fin self.size} : - (findAux self x).s = if (self.arr.get x).parent = x then self.arr else - (self.findAux ⟨_, self.parent'_lt x⟩).s.modify x fun s => + (findAux self x).s = if self.arr[x.1].parent = x then self.arr else + (self.findAux ⟨_, self.parent'_lt x x.2⟩).s.modify x fun s => { s with parent := self.rootD x } := by - rw [show self.rootD _ = (self.findAux ⟨_, self.parent'_lt x⟩).root from _] + rw [show self.rootD _ = (self.findAux ⟨_, self.parent'_lt x x.2⟩).root from _] · rw [findAux]; split <;> rfl · rw [← rootD_parent, parent, parentD_eq] simp only [rootD, Array.get_eq_getElem, Array.length_toList, findAux_root] @@ -307,10 +301,11 @@ theorem rankD_findAux {self : UnionFind} {x : Fin self.size} : rankD (findAux self x).s i = self.rank i := by if h : i < self.size then rw [findAux_s]; split <;> [rfl; skip] - have := Nat.sub_lt_sub_left (self.lt_rankMax x) (self.rank'_lt _ ‹_›) + have := Nat.sub_lt_sub_left (self.lt_rankMax x) (self.rank'_lt _ _ ‹_›) have := lt_of_parentD (by rwa [parentD_eq]) - rw [rankD_eq' (by simp [FindAux.size_eq, h]), Array.get_modify] - split <;> simp [← rankD_eq, rankD_findAux (x := ⟨_, self.parent'_lt x⟩), -Array.get_eq_getElem] + rw [rankD_eq (by simp [FindAux.size_eq, h]), Array.getElem_modify] + split <;> + simp [← rankD_eq, rankD_findAux (x := ⟨_, self.parent'_lt _ x.2⟩), -Array.get_eq_getElem] else simp only [rankD, Array.data_length, Array.get_eq_getElem, rank] rw [dif_neg (by rwa [FindAux.size_eq]), dif_neg h] @@ -319,13 +314,13 @@ termination_by self.rankMax - self.rank x set_option linter.deprecated false in theorem parentD_findAux {self : UnionFind} {x : Fin self.size} : parentD (findAux self x).s i = - if i = x then self.rootD x else parentD (self.findAux ⟨_, self.parent'_lt x⟩).s i := by + if i = x then self.rootD x else parentD (self.findAux ⟨_, self.parent'_lt _ x.2⟩).s i := by rw [findAux_s]; split <;> [split; skip] · subst i; rw [rootD_eq_self.2 _] <;> simp [parentD_eq, *, -Array.get_eq_getElem] · rw [findAux_s]; simp [*, -Array.get_eq_getElem] · next h => rw [parentD]; split <;> rename_i h' - · rw [Array.get_modify (by simpa using h')] + · rw [Array.getElem_modify (by simpa using h')] simp only [Array.data_length, @eq_comm _ i] split <;> simp [← parentD_eq, -Array.get_eq_getElem] · rw [if_neg (mt (by rintro rfl; simp [FindAux.size_eq]) h')] @@ -334,47 +329,48 @@ theorem parentD_findAux {self : UnionFind} {x : Fin self.size} : theorem parentD_findAux_rootD {self : UnionFind} {x : Fin self.size} : parentD (findAux self x).s (self.rootD x) = self.rootD x := by rw [parentD_findAux]; split <;> [rfl; rename_i h] - rw [rootD_eq_self, parent, parentD_eq] at h - have := Nat.sub_lt_sub_left (self.lt_rankMax x) (self.rank'_lt _ ‹_›) - rw [← rootD_parent, parent, parentD_eq] - exact parentD_findAux_rootD (x := ⟨_, self.parent'_lt x⟩) + rw [rootD_eq_self, parent, parentD_eq x.2] at h + have := Nat.sub_lt_sub_left (self.lt_rankMax x) (self.rank'_lt _ _ ‹_›) + rw [← rootD_parent, parent, parentD_eq x.2] + exact parentD_findAux_rootD (x := ⟨_, self.parent'_lt _ x.2⟩) termination_by self.rankMax - self.rank x theorem parentD_findAux_lt {self : UnionFind} {x : Fin self.size} (h : i < self.size) : parentD (findAux self x).s i < self.size := by - if h' : (self.arr.get x).parent = x then + if h' : self.arr[x.1].parent = x then rw [findAux_s, if_pos h']; apply self.parentD_lt h else rw [parentD_findAux] split · simp [rootD_lt] - · have := Nat.sub_lt_sub_left (self.lt_rankMax x) (self.rank'_lt _ ‹_›) + · have := Nat.sub_lt_sub_left (self.lt_rankMax x) (self.rank'_lt _ _ ‹_›) apply parentD_findAux_lt h termination_by self.rankMax - self.rank x theorem parentD_findAux_or (self : UnionFind) (x : Fin self.size) (i) : parentD (findAux self x).s i = self.rootD i ∧ self.rootD i = self.rootD x ∨ parentD (findAux self x).s i = self.parent i := by - if h' : (self.arr.get x).parent = x then + if h' : self.arr[x.1].parent = x then rw [findAux_s, if_pos h']; exact .inr rfl else rw [parentD_findAux] split · simp [*] - · have := Nat.sub_lt_sub_left (self.lt_rankMax x) (self.rank'_lt _ ‹_›) - exact (parentD_findAux_or self ⟨_, self.parent'_lt x⟩ i).imp_left <| .imp_right fun h => by - simp only [h, ← parentD_eq, rootD_parent, Array.length_toList] + · have := Nat.sub_lt_sub_left (self.lt_rankMax x) (self.rank'_lt _ _ ‹_›) + refine (parentD_findAux_or self ⟨_, self.parent'_lt _ x.2⟩ i) + |>.imp_left (.imp_right fun h => ?_) + simp only [h, ← parentD_eq, rootD_parent, Array.length_toList] termination_by self.rankMax - self.rank x theorem lt_rankD_findAux {self : UnionFind} {x : Fin self.size} : parentD (findAux self x).s i ≠ i → self.rank i < self.rank (parentD (findAux self x).s i) := by - if h' : (self.arr.get x).parent = x then + if h' : self.arr[x.1].parent = x then rw [findAux_s, if_pos h']; apply self.rank_lt else rw [parentD_findAux]; split <;> rename_i h <;> intro h' · subst i; rwa [lt_rank_root, Ne, ← rootD_eq_self] - · have := Nat.sub_lt_sub_left (self.lt_rankMax x) (self.rank'_lt _ ‹_›) + · have := Nat.sub_lt_sub_left (self.lt_rankMax x) (self.rank'_lt _ _ ‹_›) apply lt_rankD_findAux h' termination_by self.rankMax - self.rank x @@ -447,46 +443,46 @@ def linkAux (self : Array UFNode) (x y : Fin self.size) : Array UFNode := if x.1 = y then self else - let nx := self.get x - let ny := self.get y + let nx := self[x.1] + let ny := self[y.1] if ny.rank < nx.rank then self.set y {ny with parent := x} else let arr₁ := self.set x {nx with parent := y} if nx.rank = ny.rank then - arr₁.set ⟨y, by simp [arr₁]⟩ {ny with rank := ny.rank + 1} + arr₁.set y {ny with rank := ny.rank + 1} (by simp [arr₁]) else arr₁ theorem setParentBump_rankD_lt {arr : Array UFNode} {x y : Fin arr.size} - (hroot : (arr.get x).rank < (arr.get y).rank ∨ (arr.get y).parent = y) - (H : (arr.get x).rank ≤ (arr.get y).rank) {i : Nat} + (hroot : arr[x.1].rank < arr[y.1].rank ∨ arr[y.1].parent = y) + (H : arr[x.1].rank ≤ arr[y.1].rank) {i : Nat} (rankD_lt : parentD arr i ≠ i → rankD arr i < rankD arr (parentD arr i)) (hP : parentD arr' i = if x.1 = i then y.1 else parentD arr i) (hR : ∀ {i}, rankD arr' i = - if y.1 = i ∧ (arr.get x).rank = (arr.get y).rank then - (arr.get y).rank + 1 + if y.1 = i ∧ arr[x.1].rank = arr[y.1].rank then + arr[y.1].rank + 1 else rankD arr i) : ¬parentD arr' i = i → rankD arr' i < rankD arr' (parentD arr' i) := by simp [hP, hR, -Array.get_eq_getElem] at *; split <;> rename_i h₁ <;> [simp [← h₁]; skip] <;> split <;> rename_i h₂ <;> intro h · simp [h₂] at h - · simp only [rankD_eq, Array.get_eq_getElem] + · simp only [rankD_eq, x.2, y.2, Array.get_eq_getElem] split <;> rename_i h₃ · rw [← h₃]; apply Nat.lt_succ_self · exact Nat.lt_of_le_of_ne H h₃ · cases h₂.1 simp only [h₂.2, false_or, Nat.lt_irrefl] at hroot - simp only [hroot, parentD_eq, not_true_eq_false] at h + simp only [hroot, parentD_eq y.2, not_true_eq_false] at h · have := rankD_lt h split <;> rename_i h₃ · rw [← rankD_eq, h₃.1]; exact Nat.lt_succ_of_lt this · exact this theorem setParent_rankD_lt {arr : Array UFNode} {x y : Fin arr.size} - (h : (arr.get x).rank < (arr.get y).rank) {i : Nat} + (h : arr[x.1].rank < arr[y.1].rank) {i : Nat} (rankD_lt : parentD arr i ≠ i → rankD arr i < rankD arr (parentD arr i)) : - let arr' := arr.set x ⟨y, (arr.get x).rank⟩ + let arr' := arr.set x ⟨y, arr[x].rank⟩ parentD arr' i ≠ i → rankD arr' i < rankD arr' (parentD arr' i) := setParentBump_rankD_lt (.inl h) (Nat.le_of_lt h) rankD_lt parentD_set (by simp [rankD_set, Nat.ne_of_lt h, rankD_eq, -Array.get_eq_getElem]) @@ -505,7 +501,7 @@ def link (self : UnionFind) (x y : Fin self.size) (yroot : self.parent y = y) : · exact self.parentD_lt h · rw [parentD_set]; split <;> [exact x.2; exact self.parentD_lt h] · rw [parentD_set]; split - · exact self.parent'_lt _ + · exact self.parent'_lt .. · rw [parentD_set]; split <;> [exact y.2; exact self.parentD_lt h] · rw [parentD_set]; split <;> [exact y.2; exact self.parentD_lt h] rankD_lt := by diff --git a/Batteries/Data/UnionFind/Lemmas.lean b/Batteries/Data/UnionFind/Lemmas.lean index 9a7b0dac58..f070a6d4f1 100644 --- a/Batteries/Data/UnionFind/Lemmas.lean +++ b/Batteries/Data/UnionFind/Lemmas.lean @@ -43,7 +43,7 @@ theorem parentD_linkAux {self} {x y : Fin self.size} : if x.1 = y then parentD self i else - if (self.get y).rank < (self.get x).rank then + if self[y.1].rank < self[x.1].rank then if y = i then x else parentD self i else if x = i then y else parentD self i := by diff --git a/Batteries/Data/Vector/Basic.lean b/Batteries/Data/Vector/Basic.lean index 0273c93c18..7b2581c852 100644 --- a/Batteries/Data/Vector/Basic.lean +++ b/Batteries/Data/Vector/Basic.lean @@ -17,290 +17,30 @@ import Batteries.Tactic.PrintPrefix `Vector α n` is a thin wrapper around `Array α` for arrays of fixed size `n`. -/ -namespace Batteries - -/-- `Vector α n` is an `Array α` with size `n`. -/ -structure Vector (α : Type u) (n : Nat) extends Array α where - /-- Array size. -/ - size_toArray : toArray.size = n -deriving Repr, DecidableEq - -attribute [simp] Vector.size_toArray - namespace Vector @[deprecated (since := "2024-10-15")] alias size_eq := size_toArray -/-- Syntax for `Vector α n` -/ -syntax "#v[" withoutPosition(sepBy(term, ", ")) "]" : term - -open Lean in -macro_rules - | `(#v[ $elems,* ]) => `(Vector.mk (n := $(quote elems.getElems.size)) #[$elems,*] rfl) - -/-- Custom eliminator for `Vector α n` through `Array α` -/ -@[elab_as_elim] -def elimAsArray {motive : Vector α n → Sort u} - (mk : ∀ (a : Array α) (ha : a.size = n), motive ⟨a, ha⟩) : - (v : Vector α n) → motive v - | ⟨a, ha⟩ => mk a ha - -/-- Custom eliminator for `Vector α n` through `List α` -/ -@[elab_as_elim] -def elimAsList {motive : Vector α n → Sort u} - (mk : ∀ (a : List α) (ha : a.length = n), motive ⟨⟨a⟩, ha⟩) : - (v : Vector α n) → motive v - | ⟨⟨a⟩, ha⟩ => mk a ha - -/-- The empty vector. -/ -@[inline] def empty : Vector α 0 := ⟨.empty, rfl⟩ - -/-- Make an empty vector with pre-allocated capacity. -/ -@[inline] def mkEmpty (capacity : Nat) : Vector α 0 := ⟨.mkEmpty capacity, rfl⟩ - -/-- Makes a vector of size `n` with all cells containing `v`. -/ -@[inline] def mkVector (n) (v : α) : Vector α n := ⟨mkArray n v, by simp⟩ - -/-- Returns a vector of size `1` with element `v`. -/ -@[inline] def singleton (v : α) : Vector α 1 := ⟨#[v], rfl⟩ - -instance [Inhabited α] : Inhabited (Vector α n) where - default := mkVector n default - -/-- Get an element of a vector using a `Fin` index. -/ -@[inline] def get (v : Vector α n) (i : Fin n) : α := - v.toArray.get (i.cast v.size_toArray.symm) - -/-- Get an element of a vector using a `USize` index and a proof that the index is within bounds. -/ -@[inline] def uget (v : Vector α n) (i : USize) (h : i.toNat < n) : α := - v.toArray.uget i (v.size_toArray.symm ▸ h) - -instance : GetElem (Vector α n) Nat α fun _ i => i < n where - getElem x i h := get x ⟨i, h⟩ - -/-- -Get an element of a vector using a `Nat` index. Returns the given default value if the index is out -of bounds. --/ -@[inline] def getD (v : Vector α n) (i : Nat) (default : α) : α := v.toArray.getD i default - -/-- The last element of a vector. Panics if the vector is empty. -/ -@[inline] def back! [Inhabited α] (v : Vector α n) : α := v.toArray.back! - -/-- The last element of a vector, or `none` if the array is empty. -/ -@[inline] def back? (v : Vector α n) : Option α := v.toArray.back? - -/-- The last element of a non-empty vector. -/ -@[inline] def back [NeZero n] (v : Vector α n) : α := - -- TODO: change to just `v[n]` - have : Inhabited α := ⟨v[0]'(Nat.pos_of_neZero n)⟩ - v.back! - -/-- The first element of a non-empty vector. -/ -@[inline] def head [NeZero n] (v : Vector α n) := v[0]'(Nat.pos_of_neZero n) - -/-- Push an element `x` to the end of a vector. -/ -@[inline] def push (x : α) (v : Vector α n) : Vector α (n + 1) := - ⟨v.toArray.push x, by simp⟩ - -/-- Remove the last element of a vector. -/ -@[inline] def pop (v : Vector α n) : Vector α (n - 1) := - ⟨Array.pop v.toArray, by simp⟩ - -/-- -Set an element in a vector using a `Fin` index. - -This will perform the update destructively provided that the vector has a reference count of 1. --/ -@[inline] def set (v : Vector α n) (i : Fin n) (x : α) : Vector α n := - ⟨v.toArray.set (i.cast v.size_toArray.symm) x, by simp⟩ - -/-- -Set an element in a vector using a `Nat` index. By default, the `get_elem_tactic` is used to -synthesize a proof that the index is within bounds. - -This will perform the update destructively provided that the vector has a reference count of 1. --/ -@[inline] def setN (v : Vector α n) (i : Nat) (x : α) (h : i < n := by get_elem_tactic) : - Vector α n := ⟨v.toArray.setN i x (by simp_all), by simp⟩ - -/-- -Set an element in a vector using a `Nat` index. Returns the vector unchanged if the index is out of -bounds. - -This will perform the update destructively provided that the vector has a reference count of 1. --/ -@[inline] def setD (v : Vector α n) (i : Nat) (x : α) : Vector α n := - ⟨v.toArray.setD i x, by simp⟩ - -/-- -Set an element in a vector using a `Nat` index. Panics if the index is out of bounds. - -This will perform the update destructively provided that the vector has a reference count of 1. --/ -@[inline] def set! (v : Vector α n) (i : Nat) (x : α) : Vector α n := - ⟨v.toArray.set! i x, by simp⟩ - -/-- Append two vectors. -/ -@[inline] def append (v : Vector α n) (w : Vector α m) : Vector α (n + m) := - ⟨v.toArray ++ w.toArray, by simp⟩ - -instance : HAppend (Vector α n) (Vector α m) (Vector α (n + m)) where - hAppend := append - -/-- Creates a vector from another with a provably equal length. -/ -@[inline] protected def cast (h : n = m) (v : Vector α n) : Vector α m := - ⟨v.toArray, by simp [*]⟩ - -/-- -Extracts the slice of a vector from indices `start` to `stop` (exclusive). If `start ≥ stop`, the -result is empty. If `stop` is greater than the size of the vector, the size is used instead. --/ -@[inline] def extract (v : Vector α n) (start stop : Nat) : Vector α (min stop n - start) := - ⟨v.toArray.extract start stop, by simp⟩ - -/-- Maps elements of a vector using the function `f`. -/ -@[inline] def map (f : α → β) (v : Vector α n) : Vector β n := - ⟨v.toArray.map f, by simp⟩ - -/-- Maps corresponding elements of two vectors of equal size using the function `f`. -/ -@[inline] def zipWith (a : Vector α n) (b : Vector β n) (f : α → β → φ) : Vector φ n := - ⟨Array.zipWith a.toArray b.toArray f, by simp⟩ - -/-- The vector of length `n` whose `i`-th element is `f i`. -/ -@[inline] def ofFn (f : Fin n → α) : Vector α n := - ⟨Array.ofFn f, by simp⟩ - -/-- -Swap two elements of a vector using `Fin` indices. - -This will perform the update destructively provided that the vector has a reference count of 1. --/ -@[inline] def swap (v : Vector α n) (i j : Fin n) : Vector α n := - ⟨v.toArray.swap (Fin.cast v.size_toArray.symm i) (Fin.cast v.size_toArray.symm j), by simp⟩ - -/-- -Swap two elements of a vector using `Nat` indices. By default, the `get_elem_tactic` is used to -synthesize proofs that the indices are within bounds. - -This will perform the update destructively provided that the vector has a reference count of 1. --/ -@[inline] def swapN (v : Vector α n) (i j : Nat) - (hi : i < n := by get_elem_tactic) (hj : j < n := by get_elem_tactic) : Vector α n := - ⟨v.toArray.swapN i j (by simp_all) (by simp_all), by simp⟩ - -/-- -Swap two elements of a vector using `Nat` indices. Panics if either index is out of bounds. - -This will perform the update destructively provided that the vector has a reference count of 1. --/ -@[inline] def swap! (v : Vector α n) (i j : Nat) : Vector α n := - ⟨v.toArray.swap! i j, by simp⟩ - -/-- -Swaps an element of a vector with a given value using a `Fin` index. The original value is returned -along with the updated vector. - -This will perform the update destructively provided that the vector has a reference count of 1. --/ -@[inline] def swapAt (v : Vector α n) (i : Fin n) (x : α) : α × Vector α n := - let a := v.toArray.swapAt (Fin.cast v.size_toArray.symm i) x - ⟨a.fst, a.snd, by simp [a]⟩ - -/-- -Swaps an element of a vector with a given value using a `Nat` index. By default, the -`get_elem_tactic` is used to synthesise a proof that the index is within bounds. The original value -is returned along with the updated vector. - -This will perform the update destructively provided that the vector has a reference count of 1. --/ -@[inline] def swapAtN (v : Vector α n) (i : Nat) (x : α) (h : i < n := by get_elem_tactic) : - α × Vector α n := - let a := v.toArray.swapAtN i x (by simp_all) - ⟨a.fst, a.snd, by simp [a]⟩ +@[deprecated (since := "2024-11-25")] alias setN := set -/-- -Swaps an element of a vector with a given value using a `Nat` index. Panics if the index is out of -bounds. The original value is returned along with the updated vector. +@[deprecated (since := "2024-11-25")] alias setD := setIfInBounds -This will perform the update destructively provided that the vector has a reference count of 1. --/ -@[inline] def swapAt! (v : Vector α n) (i : Nat) (x : α) : α × Vector α n := - let a := v.toArray.swapAt! i x - ⟨a.fst, a.snd, by simp [a]⟩ +@[deprecated (since := "2024-11-24")] alias swapN := swap -/-- The vector `#v[0,1,2,...,n-1]`. -/ -@[inline] def range (n : Nat) : Vector Nat n := ⟨Array.range n, by simp⟩ +@[deprecated (since := "2024-11-24")] alias swap! := swapIfInBounds -/-- -Extract the first `m` elements of a vector. If `m` is greater than or equal to the size of the -vector then the vector is returned unchanged. --/ -@[inline] def take (v : Vector α n) (m : Nat) : Vector α (min m n) := - ⟨v.toArray.take m, by simp⟩ +@[deprecated (since := "2024-11-24")] alias swapAtN := swapAt @[deprecated (since := "2024-10-22")] alias shrink := take -/-- -Deletes the first `m` elements of a vector. If `m` is greater than or equal to the size of the -vector then the empty vector is returned. --/ -@[inline] def drop (v : Vector α n) (m : Nat) : Vector α (n - m) := - ⟨v.toArray.extract m v.size, by simp⟩ - -/-- -Compares two vectors of the same size using a given boolean relation `r`. `isEqv v w r` returns -`true` if and only if `r v[i] w[i]` is true for all indices `i`. --/ -@[inline] def isEqv (v w : Vector α n) (r : α → α → Bool) : Bool := - Array.isEqvAux v.toArray w.toArray (by simp) r n (by simp) +@[deprecated (since := "2024-11-20")] alias eraseIdxN := eraseIdx -instance [BEq α] : BEq (Vector α n) where - beq a b := isEqv a b (· == ·) +/-- Use `#v[]` instead. -/ +@[deprecated "Use `#v[]`." (since := "2024-11-27")] +def empty (α : Type u) : Vector α 0 := #v[] proof_wanted instLawfulBEq (α n) [BEq α] [LawfulBEq α] : LawfulBEq (Vector α n) -/-- Reverse the elements of a vector. -/ -@[inline] def reverse (v : Vector α n) : Vector α n := - ⟨v.toArray.reverse, by simp⟩ - -/-- Delete an element of a vector using a `Fin` index. -/ -@[inline] def feraseIdx (v : Vector α n) (i : Fin n) : Vector α (n-1) := - ⟨v.toArray.feraseIdx (Fin.cast v.size_toArray.symm i), by simp [Array.size_feraseIdx]⟩ - -/-- Delete an element of a vector using a `Nat` index. Panics if the index is out of bounds. -/ -@[inline] def eraseIdx! (v : Vector α n) (i : Nat) : Vector α (n-1) := - if _ : i < n then - ⟨v.toArray.eraseIdx i, by simp [*]⟩ - else - have : Inhabited (Vector α (n-1)) := ⟨v.pop⟩ - panic! "index out of bounds" - -/-- Delete the first element of a vector. Returns the empty vector if the input vector is empty. -/ -@[inline] def tail (v : Vector α n) : Vector α (n-1) := - if _ : 0 < n then - ⟨v.toArray.eraseIdx 0, by simp [*]⟩ - else - v.cast (by omega) - -/-- -Delete an element of a vector using a `Nat` index. By default, the `get_elem_tactic` is used to -synthesise a proof that the index is within bounds. --/ -@[inline] def eraseIdxN (v : Vector α n) (i : Nat) (h : i < n := by get_elem_tactic) : - Vector α (n - 1) := ⟨v.toArray.eraseIdxN i (by simp [*]), by simp⟩ - -/-- -Finds the first index of a given value in a vector using `==` for comparison. Returns `none` if the -no element of the index matches the given value. --/ -@[inline] def indexOf? [BEq α] (v : Vector α n) (x : α) : Option (Fin n) := - (v.toArray.indexOf? x).map (Fin.cast v.size_toArray) - -/-- Returns `true` when `v` is a prefix of the vector `w`. -/ -@[inline] def isPrefixOf [BEq α] (v : Vector α m) (w : Vector α n) : Bool := - v.toArray.isPrefixOf w.toArray - /-- Returns `true` when all elements of the vector are pairwise distinct using `==` for comparison. -/ diff --git a/Batteries/Data/Vector/Lemmas.lean b/Batteries/Data/Vector/Lemmas.lean index 9a14c4a548..3cbcd854f2 100644 --- a/Batteries/Data/Vector/Lemmas.lean +++ b/Batteries/Data/Vector/Lemmas.lean @@ -10,8 +10,6 @@ import Batteries.Data.List.Lemmas import Batteries.Data.Array.Lemmas import Batteries.Tactic.Lint.Simp -namespace Batteries - namespace Vector theorem toArray_injective : ∀ {v w : Vector α n}, v.toArray = w.toArray → v = w @@ -45,13 +43,13 @@ theorem toArray_mk (a : Array α) (h : a.size = n) : (Vector.mk a h).toArray = a @[simp] theorem drop_mk (a : Array α) (h : a.size = n) (m) : (Vector.mk a h).drop m = Vector.mk (a.extract m a.size) (by simp [h]) := rfl +@[simp] theorem eraseIdx_mk (a : Array α) (h : a.size = n) (i) (h') : + (Vector.mk a h).eraseIdx i h' = Vector.mk (a.eraseIdx i) (by simp [h]) := rfl + @[simp] theorem eraseIdx!_mk (a : Array α) (h : a.size = n) (i) (hi : i < n) : - (Vector.mk a h).eraseIdx! i = Vector.mk (a.eraseIdx! i) (by simp [h, hi]) := by + (Vector.mk a h).eraseIdx! i = Vector.mk (a.eraseIdx i) (by simp [h, hi]) := by simp [Vector.eraseIdx!, hi] -@[simp] theorem feraseIdx_mk (a : Array α) (h : a.size = n) (i) : - (Vector.mk a h).feraseIdx i = Vector.mk (a.feraseIdx (i.cast h.symm)) (by simp [h]) := rfl - @[simp] theorem extract_mk (a : Array α) (h : a.size = n) (start stop) : (Vector.mk a h).extract start stop = Vector.mk (a.extract start stop) (by simp [h]) := rfl @@ -59,7 +57,7 @@ theorem toArray_mk (a : Array α) (h : a.size = n) : (Vector.mk a h).toArray = a (Vector.mk a h)[i] = a[i] := rfl @[simp] theorem get_mk (a : Array α) (h : a.size = n) (i) : - (Vector.mk a h).get i = a.get (i.cast h.symm) := rfl + (Vector.mk a h).get i = a[i] := rfl @[simp] theorem getD_mk (a : Array α) (h : a.size = n) (i x) : (Vector.mk a h).getD i x = a.getD i x := rfl @@ -89,38 +87,35 @@ theorem toArray_mk (a : Array α) (h : a.size = n) : (Vector.mk a h).toArray = a @[simp] theorem reverse_mk (a : Array α) (h : a.size = n) : (Vector.mk a h).reverse = Vector.mk a.reverse (by simp [h]) := rfl -@[simp] theorem set_mk (a : Array α) (h : a.size = n) (i x) : - (Vector.mk a h).set i x = Vector.mk (a.set (i.cast h.symm) x) (by simp [h]) := rfl +@[simp] theorem set_mk (a : Array α) (h : a.size = n) (i x w) : + (Vector.mk a h).set i x = Vector.mk (a.set i x) (by simp [h]) := rfl @[simp] theorem set!_mk (a : Array α) (h : a.size = n) (i x) : (Vector.mk a h).set! i x = Vector.mk (a.set! i x) (by simp [h]) := rfl -@[simp] theorem setD_mk (a : Array α) (h : a.size = n) (i x) : - (Vector.mk a h).setD i x = Vector.mk (a.setD i x) (by simp [h]) := rfl +@[simp] theorem setIfInBounds_mk (a : Array α) (h : a.size = n) (i x) : + (Vector.mk a h).setIfInBounds i x = Vector.mk (a.setIfInBounds i x) (by simp [h]) := rfl -@[simp] theorem setN_mk (a : Array α) (h : a.size = n) (i x) (hi : i < n) : - (Vector.mk a h).setN i x = Vector.mk (a.setN i x) (by simp [h]) := rfl +@[deprecated (since := "2024-11-25")] alias setN_mk := set_mk -@[simp] theorem swap_mk (a : Array α) (h : a.size = n) (i j) : - (Vector.mk a h).swap i j = Vector.mk (a.swap (i.cast h.symm) (j.cast h.symm)) (by simp [h]) := +@[simp] theorem swap_mk (a : Array α) (h : a.size = n) (i j) (hi hj) : + (Vector.mk a h).swap i j = Vector.mk (a.swap i j) (by simp [h]) := rfl -@[simp] theorem swap!_mk (a : Array α) (h : a.size = n) (i j) : - (Vector.mk a h).swap! i j = Vector.mk (a.swap! i j) (by simp [h]) := rfl +@[simp] theorem swapIfInBounds_mk (a : Array α) (h : a.size = n) (i j) : + (Vector.mk a h).swapIfInBounds i j = Vector.mk (a.swapIfInBounds i j) (by simp [h]) := rfl -@[simp] theorem swapN_mk (a : Array α) (h : a.size = n) (i j) (hi : i < n) (hj : j < n) : - (Vector.mk a h).swapN i j = Vector.mk (a.swapN i j) (by simp [h]) := rfl +@[deprecated (since := "2024-11-25")] alias swapN_mk := swap_mk -@[simp] theorem swapAt_mk (a : Array α) (h : a.size = n) (i x) : (Vector.mk a h).swapAt i x = - ((a.swapAt (i.cast h.symm) x).fst, Vector.mk (a.swapAt (i.cast h.symm) x).snd (by simp [h])) := +@[simp] theorem swapAt_mk (a : Array α) (h : a.size = n) (i x) (hi) : + (Vector.mk a h).swapAt i x = + ((a.swapAt i x).fst, Vector.mk (a.swapAt i x).snd (by simp [h])) := rfl @[simp] theorem swapAt!_mk (a : Array α) (h : a.size = n) (i x) : (Vector.mk a h).swapAt! i x = ((a.swapAt! i x).fst, Vector.mk (a.swapAt! i x).snd (by simp [h])) := rfl -@[simp] theorem swapAtN_mk (a : Array α) (h : a.size = n) (i x) (hi : i < n) : - (Vector.mk a h).swapAtN i x = - ((a.swapAtN i x).fst, Vector.mk (a.swapAtN i x).snd (by simp [h])) := rfl +@[deprecated (since := "2024-11-25")] alias swapAtN_mk := swapAt_mk @[simp] theorem take_mk (a : Array α) (h : a.size = n) (m) : (Vector.mk a h).take m = Vector.mk (a.take m) (by simp [h]) := rfl @@ -141,20 +136,17 @@ theorem toArray_mk (a : Array α) (h : a.size = n) : (Vector.mk a h).toArray = a @[simp] theorem toArray_drop (a : Vector α n) (m) : (a.drop m).toArray = a.toArray.extract m a.size := rfl -@[simp] theorem toArray_empty : (Vector.empty (α := α)).toArray = #[] := rfl +@[simp] theorem toArray_empty : (#v[] : Vector α 0).toArray = #[] := rfl @[simp] theorem toArray_mkEmpty (cap) : (Vector.mkEmpty (α := α) cap).toArray = Array.mkEmpty cap := rfl +@[simp] theorem toArray_eraseIdx (a : Vector α n) (i) (h) : + (a.eraseIdx i h).toArray = a.toArray.eraseIdx i (by simp [h]) := rfl + @[simp] theorem toArray_eraseIdx! (a : Vector α n) (i) (hi : i < n) : (a.eraseIdx! i).toArray = a.toArray.eraseIdx! i := by - cases a; simp [hi] - -@[simp] theorem toArray_eraseIdxN (a : Vector α n) (i) (hi : i < n) : - (a.eraseIdxN i).toArray = a.toArray.eraseIdxN i (by simp [hi]) := rfl - -@[simp] theorem toArray_feraseIdx (a : Vector α n) (i) : - (a.feraseIdx i).toArray = a.toArray.feraseIdx (i.cast a.size_toArray.symm) := rfl + cases a; simp_all [Array.eraseIdx!] @[simp] theorem toArray_extract (a : Vector α n) (start stop) : (a.extract start stop).toArray = a.toArray.extract start stop := rfl @@ -172,42 +164,39 @@ theorem toArray_mk (a : Array α) (h : a.size = n) : (Vector.mk a h).toArray = a @[simp] theorem toArray_reverse (a : Vector α n) : a.reverse.toArray = a.toArray.reverse := rfl -@[simp] theorem toArray_set (a : Vector α n) (i x) : - (a.set i x).toArray = a.toArray.set (i.cast a.size_toArray.symm) x := rfl +@[simp] theorem toArray_set (a : Vector α n) (i x h) : + (a.set i x).toArray = a.toArray.set i x (by simpa using h):= rfl @[simp] theorem toArray_set! (a : Vector α n) (i x) : (a.set! i x).toArray = a.toArray.set! i x := rfl -@[simp] theorem toArray_setD (a : Vector α n) (i x) : - (a.setD i x).toArray = a.toArray.setD i x := rfl +@[simp] theorem toArray_setIfInBounds (a : Vector α n) (i x) : + (a.setIfInBounds i x).toArray = a.toArray.setIfInBounds i x := rfl -@[simp] theorem toArray_setN (a : Vector α n) (i x) (hi : i < n) : - (a.setN i x).toArray = a.toArray.setN i x (by simp [hi]) := rfl +@[deprecated (since := "2024-11-25")] alias toArray_setD := toArray_setIfInBounds +@[deprecated (since := "2024-11-25")] alias toArray_setN := toArray_set @[simp] theorem toArray_singleton (x : α) : (Vector.singleton x).toArray = #[x] := rfl -@[simp] theorem toArray_swap (a : Vector α n) (i j) : (a.swap i j).toArray = - a.toArray.swap (i.cast a.size_toArray.symm) (j.cast a.size_toArray.symm) := rfl +@[simp] theorem toArray_swap (a : Vector α n) (i j) (hi hj) : (a.swap i j).toArray = + a.toArray.swap i j (by simp [hi, hj]) (by simp [hi, hj]) := rfl -@[simp] theorem toArray_swap! (a : Vector α n) (i j) : - (a.swap! i j).toArray = a.toArray.swap! i j := rfl +@[simp] theorem toArray_swapIfInBounds (a : Vector α n) (i j) : + (a.swapIfInBounds i j).toArray = a.toArray.swapIfInBounds i j := rfl -@[simp] theorem toArray_swapN (a : Vector α n) (i j) (hi : i < n) (hj : j < n) : - (a.swapN i j).toArray = a.toArray.swapN i j (by simp [hi]) (by simp [hj]) := rfl +@[deprecated (since := "2024-11-25")] alias toArray_swap! := toArray_swapIfInBounds +@[deprecated (since := "2024-11-25")] alias toArray_swapN := toArray_swap -@[simp] theorem toArray_swapAt (a : Vector α n) (i x) : +@[simp] theorem toArray_swapAt (a : Vector α n) (i x h) : ((a.swapAt i x).fst, (a.swapAt i x).snd.toArray) = - ((a.toArray.swapAt (i.cast a.size_toArray.symm) x).fst, - (a.toArray.swapAt (i.cast a.size_toArray.symm) x).snd) := rfl + ((a.toArray.swapAt i x (by simpa using h)).fst, + (a.toArray.swapAt i x (by simpa using h)).snd) := rfl @[simp] theorem toArray_swapAt! (a : Vector α n) (i x) : ((a.swapAt! i x).fst, (a.swapAt! i x).snd.toArray) = ((a.toArray.swapAt! i x).fst, (a.toArray.swapAt! i x).snd) := rfl -@[simp] theorem toArray_swapAtN (a : Vector α n) (i x) (hi : i < n) : - ((a.swapAtN i x).fst, (a.swapAtN i x).snd.toArray) = - ((a.toArray.swapAtN i x (by simp [hi])).fst, - (a.toArray.swapAtN i x (by simp [hi])).snd) := rfl +@[deprecated (since := "2024-11-25")] alias toArray_swapAtN := toArray_swapAt @[simp] theorem toArray_take (a : Vector α n) (m) : (a.take m).toArray = a.toArray.take m := rfl @@ -256,22 +245,22 @@ defeq issues in the implicit size argument. /-! ### empty lemmas -/ -@[simp] theorem map_empty (f : α → β) : map f empty = empty := by - apply toArray_injective; simp +theorem map_empty (f : α → β) : map f #v[] = #v[] := by + simp -protected theorem eq_empty (v : Vector α 0) : v = empty := by +protected theorem eq_empty (v : Vector α 0) : v = #v[] := by apply toArray_injective apply Array.eq_empty_of_size_eq_zero v.2 /-! ### Decidable quantifiers. -/ theorem forall_zero_iff {P : Vector α 0 → Prop} : - (∀ v, P v) ↔ P .empty := by + (∀ v, P v) ↔ P #v[] := by constructor · intro h apply h · intro h v - obtain (rfl : v = .empty) := (by ext i h; simp at h) + obtain (rfl : v = #v[]) := (by ext i h; simp at h) apply h theorem forall_cons_iff {P : Vector α (n + 1) → Prop} : @@ -285,7 +274,7 @@ theorem forall_cons_iff {P : Vector α (n + 1) → Prop} : apply h instance instDecidableForallVectorZero (P : Vector α 0 → Prop) : - ∀ [Decidable (P .empty)], Decidable (∀ v, P v) + ∀ [Decidable (P #v[])], Decidable (∀ v, P v) | .isTrue h => .isTrue fun ⟨v, s⟩ => by obtain (rfl : v = .empty) := (by ext i h₁ h₂; exact s; cases h₂) exact h @@ -295,7 +284,7 @@ instance instDecidableForallVectorSucc (P : Vector α (n+1) → Prop) [Decidable (∀ (x : α) (v : Vector α n), P (v.push x))] : Decidable (∀ v, P v) := decidable_of_iff' (∀ x (v : Vector α n), P (v.push x)) forall_cons_iff -instance instDecidableExistsVectorZero (P : Vector α 0 → Prop) [Decidable (P .empty)] : +instance instDecidableExistsVectorZero (P : Vector α 0 → Prop) [Decidable (P #v[])] : Decidable (∃ v, P v) := decidable_of_iff (¬ ∀ v, ¬ P v) Classical.not_forall_not diff --git a/Batteries/Lean/Meta/Simp.lean b/Batteries/Lean/Meta/Simp.lean index 7ea81e87fa..085472c934 100644 --- a/Batteries/Lean/Meta/Simp.lean +++ b/Batteries/Lean/Meta/Simp.lean @@ -55,10 +55,8 @@ def mkSimpContext' (simpTheorems : SimpTheorems) (stx : Syntax) (eraseLocal : Bo pure simpTheorems let simprocs ← if simpOnly then pure {} else Simp.getSimprocs let congrTheorems ← Meta.getSimpCongrTheorems - let r ← elabSimpArgs stx[4] (eraseLocal := eraseLocal) (kind := kind) (simprocs := #[simprocs]) { - config := (← elabSimpConfig stx[1] (kind := kind)) - simpTheorems := #[simpTheorems], congrTheorems - } + let ctx ← Simp.mkContext (← elabSimpConfig stx[1] (kind := kind)) #[simpTheorems] congrTheorems + let r ← elabSimpArgs stx[4] (simprocs := #[simprocs]) ctx eraseLocal kind if !r.starArg || ignoreStarArg then return { r with dischargeWrapper } else @@ -73,7 +71,7 @@ def mkSimpContext' (simpTheorems : SimpTheorems) (stx : Syntax) (eraseLocal : Bo for h in hs do unless simpTheorems.isErased (.fvar h) do simpTheorems ← simpTheorems.addTheorem (.fvar h) (← h.getDecl).toExpr - let ctx := { ctx with simpTheorems } + let ctx := ctx.setSimpTheorems simpTheorems return { ctx, simprocs, dischargeWrapper } diff --git a/Batteries/Lean/NameMap.lean b/Batteries/Lean/NameMap.lean deleted file mode 100644 index 0c6d341925..0000000000 --- a/Batteries/Lean/NameMap.lean +++ /dev/null @@ -1,40 +0,0 @@ -/- -Copyright (c) 2023 Jon Eugster. All rights reserved. -Released under Apache 2.0 license as described in the file LICENSE. -Authors: Jon Eugster --/ -import Lean.Data.NameMap - -/-! -# Additional functions on `Lean.NameMap`. - -We provide `NameMap.filter` and `NameMap.filterMap`. --/ - -namespace Lean.NameMap - -/-- -`filter f m` returns the `NameMap` consisting of all -"`key`/`val`"-pairs in `m` where `f key val` returns `true`. --/ -def filter (f : Name → α → Bool) (m : NameMap α) : NameMap α := - m.fold process {} -where - /-- see `Lean.NameMap.filter` -/ - process (r : NameMap α) (n : Name) (i : α) := - if f n i then r.insert n i else r - -/-- -`filterMap f m` allows to filter a `NameMap` and simultaneously modify the filtered values. - -It takes a function `f : Name → α → Option β` and applies `f name` to the value with key `name`. -The resulting entries with non-`none` value are collected to form the output `NameMap`. --/ -def filterMap (f : Name → α → Option β) (m : NameMap α) : NameMap β := - m.fold process {} -where - /-- see `Lean.NameMap.filterMap` -/ - process (r : NameMap β) (n : Name) (i : α) := - match f n i with - | none => r - | some b => r.insert n b diff --git a/Batteries/Tactic/Instances.lean b/Batteries/Tactic/Instances.lean index b243c4f153..7e7ea30d8f 100644 --- a/Batteries/Tactic/Instances.lean +++ b/Batteries/Tactic/Instances.lean @@ -35,7 +35,7 @@ elab (name := instancesCmd) tk:"#instances " stx:term : command => runTermElabM let some className ← isClass? type | throwErrorAt stx "type class instance expected{indentExpr type}" let globalInstances ← getGlobalInstancesIndex - let result ← globalInstances.getUnify type tcDtConfig + let result ← globalInstances.getUnify type let erasedInstances ← getErasedInstances let mut msgs := #[] for e in result.insertionSort fun e₁ e₂ => e₁.priority < e₂.priority do diff --git a/Batteries/Tactic/Lint/Frontend.lean b/Batteries/Tactic/Lint/Frontend.lean index cb0369db5f..7f39e6759c 100644 --- a/Batteries/Tactic/Lint/Frontend.lean +++ b/Batteries/Tactic/Lint/Frontend.lean @@ -53,7 +53,7 @@ sanity check, lint, cleanup, command, tactic -/ namespace Batteries.Tactic.Lint -open Lean +open Lean Elab Command /-- Verbosity for the linter output. -/ inductive LintVerbosity @@ -89,9 +89,6 @@ def getChecks (slow : Bool) (runOnly : Option (List Name)) (runAlways : Option ( result := result.binInsert (·.name.lt ·.name) linter pure result --- Note: we have to use the same context as `runTermElabM` here so that the `simpNF` --- linter works the same as the `simp` tactic itself. See #671 -open private mkMetaContext from Lean.Elab.Command in /-- Runs all the specified linters on all the specified declarations in parallel, producing a list of results. @@ -107,7 +104,7 @@ def lintCore (decls : Array Name) (linters : Array NamedLinter) : (linter, ·) <$> decls.mapM fun decl => (decl, ·) <$> do BaseIO.asTask do match ← withCurrHeartbeats (linter.test decl) - |>.run' mkMetaContext + |>.run' mkMetaContext -- We use the context used by `Command.liftTermElabM` |>.run' {options, fileName := "", fileMap := default} {env} |>.toBaseIO with | Except.ok msg? => pure msg? diff --git a/Batteries/Tactic/Lint/Simp.lean b/Batteries/Tactic/Lint/Simp.lean index c6c0ad8828..3e83431dcc 100644 --- a/Batteries/Tactic/Lint/Simp.lean +++ b/Batteries/Tactic/Lint/Simp.lean @@ -108,7 +108,7 @@ see note [simp-normal form] for tips how to debug this. https://leanprover-community.github.io/mathlib_docs/notes.html#simp-normal%20form" test := fun declName => do unless ← isSimpTheorem declName do return none - let ctx := { ← Simp.Context.mkDefault with config.decide := false } + let ctx ← Simp.Context.mkDefault checkAllSimpTheoremInfos (← getConstInfo declName).type fun {lhs, rhs, isConditional, ..} => do let isRfl ← isRflTheorem declName let ({ expr := lhs', proof? := prf1, .. }, prf1Stats) ← @@ -228,7 +228,7 @@ private def Expr.eqOrIff? : Expr → Option (Expr × Expr) noErrorsFound := "No commutativity lemma is marked simp." errorsFound := "COMMUTATIVITY LEMMA IS SIMP. Some commutativity lemmas are simp lemmas:" - test := fun declName => withReducible do + test := fun declName => withSimpGlobalConfig do withReducible do unless ← isSimpTheorem declName do return none let ty := (← getConstInfo declName).type forallTelescopeReducing ty fun _ ty' => do @@ -239,7 +239,7 @@ Some commutativity lemmas are simp lemmas:" unless ← isDefEq rhs lhs' do return none unless ← withNewMCtxDepth (isDefEq rhs lhs') do return none -- make sure that the discrimination tree will actually find this match (see #69) - if (← (← DiscrTree.empty.insert rhs () simpDtConfig).getMatch lhs' simpDtConfig).isEmpty then + if (← (← DiscrTree.empty.insert rhs ()).getMatch lhs').isEmpty then return none -- ensure that the second application makes progress: if ← isDefEq lhs' rhs' then return none diff --git a/Batteries/Tactic/Trans.lean b/Batteries/Tactic/Trans.lean index 7070c843ac..903796bc5d 100644 --- a/Batteries/Tactic/Trans.lean +++ b/Batteries/Tactic/Trans.lean @@ -24,9 +24,6 @@ open Lean Meta Elab initialize registerTraceClass `Tactic.trans -/-- Discrimation tree settings for the `trans` extension. -/ -def transExt.config : WhnfCoreConfig := {} - /-- Environment extension storing transitivity lemmas -/ initialize transExt : SimpleScopedEnvExtension (Name × Array DiscrTree.Key) (DiscrTree Name) ← @@ -49,7 +46,7 @@ initialize registerBuiltinAttribute { let some xyHyp := xs.pop.back? | fail let .app (.app _ _) _ ← inferType yzHyp | fail let .app (.app _ _) _ ← inferType xyHyp | fail - let key ← withReducible <| DiscrTree.mkPath rel transExt.config + let key ← withReducible <| DiscrTree.mkPath rel transExt.add (decl, key) kind } @@ -162,7 +159,7 @@ elab "trans" t?:(ppSpace colGt term)? : tactic => withMainContext do let s ← saveState trace[Tactic.trans]"trying homogeneous case" let lemmas := - (← (transExt.getState (← getEnv)).getUnify rel transExt.config).push ``Trans.simple + (← (transExt.getState (← getEnv)).getUnify rel).push ``Trans.simple for lem in lemmas do trace[Tactic.trans]"trying lemma {lem}" try @@ -182,7 +179,7 @@ elab "trans" t?:(ppSpace colGt term)? : tactic => withMainContext do trace[Tactic.trans]"trying heterogeneous case" let t'? ← t?.mapM (elabTermWithHoles · none (← getMainTag)) let s ← saveState - for lem in (← (transExt.getState (← getEnv)).getUnify rel transExt.config).push + for lem in (← (transExt.getState (← getEnv)).getUnify rel).push ``HEq.trans |>.push ``Trans.trans do try liftMetaTactic fun g => do diff --git a/Batteries/Util/Cache.lean b/Batteries/Util/Cache.lean index 866325df5a..de6beb846b 100644 --- a/Batteries/Util/Cache.lean +++ b/Batteries/Util/Cache.lean @@ -132,9 +132,6 @@ the second will store declarations from imports (and will hopefully be "read-onl -/ @[reducible] def DiscrTreeCache (α : Type) : Type := DeclCache (DiscrTree α × DiscrTree α) -/-- Discrimination tree settings for the `DiscrTreeCache`. -/ -def DiscrTreeCache.config : WhnfCoreConfig := {} - /-- Build a `DiscrTreeCache`, from a function that returns a collection of keys and values for each declaration. @@ -170,4 +167,4 @@ def DiscrTreeCache.getMatch (c : DiscrTreeCache α) (e : Expr) : MetaM (Array α let (locals, imports) ← c.get -- `DiscrTree.getMatch` returns results in batches, with more specific lemmas coming later. -- Hence we reverse this list, so we try out more specific lemmas earlier. - return (← locals.getMatch e config).reverse ++ (← imports.getMatch e config).reverse + return (← locals.getMatch e).reverse ++ (← imports.getMatch e).reverse diff --git a/BatteriesTest/alias.lean b/BatteriesTest/alias.lean index aa6fdfc720..4babc46b5e 100644 --- a/BatteriesTest/alias.lean +++ b/BatteriesTest/alias.lean @@ -11,16 +11,16 @@ theorem foo : 1 + 1 = 2 := rfl /-- doc string for `alias foo` -/ alias foo1 := foo -@[deprecated] alias foo2 := foo -@[deprecated foo2] alias _root_.B.foo3 := foo +@[deprecated (since := "2038-01-20")] alias foo2 := foo +@[deprecated foo2 (since := "2038-01-20")] alias _root_.B.foo3 := foo @[deprecated foo2 "it was never a good idea anyway" (since := "last thursday")] alias foo4 := foo example : 1 + 1 = 2 := foo1 -/-- warning: `A.foo2` has been deprecated, use `A.foo` instead -/ +/-- warning: `A.foo2` has been deprecated: use `A.foo` instead -/ #guard_msgs in example : 1 + 1 = 2 := foo2 -/-- warning: `B.foo3` has been deprecated, use `A.foo2` instead -/ +/-- warning: `B.foo3` has been deprecated: use `A.foo2` instead -/ #guard_msgs in example : 1 + 1 = 2 := B.foo3 -/-- warning: it was never a good idea anyway -/ +/-- warning: `A.foo4` has been deprecated: it was never a good idea anyway -/ #guard_msgs in example : 1 + 1 = 2 := foo4 /-- doc string for bar -/ @@ -87,7 +87,7 @@ unsafe alias barbaz3 := id /- iff version -/ -@[deprecated] alias ⟨mpId, mprId⟩ := Iff.rfl +@[deprecated (since := "2038-01-20")] alias ⟨mpId, mprId⟩ := Iff.rfl /-- info: A.mpId {a : Prop} : a → a -/ #guard_msgs in #check mpId @@ -95,9 +95,9 @@ unsafe alias barbaz3 := id #guard_msgs in #check mprId /-- -warning: `A.mpId` has been deprecated, use `Iff.rfl` instead +warning: `A.mpId` has been deprecated: use `Iff.rfl` instead --- -warning: `A.mprId` has been deprecated, use `Iff.rfl` instead +warning: `A.mprId` has been deprecated: use `Iff.rfl` instead -/ #guard_msgs in example := And.intro @mpId @mprId diff --git a/BatteriesTest/array.lean b/BatteriesTest/array.lean index 89f784293e..e94478ddb6 100644 --- a/BatteriesTest/array.lean +++ b/BatteriesTest/array.lean @@ -9,14 +9,14 @@ variable (v d : α) variable (g : i < (a.set! i v).size) variable (j_lt : j < (a.set! i v).size) -#check_simp (a.set! i v).get ⟨i, g⟩ ~> v -#check_simp (a.set! i v).get! i ~> (a.setD i v)[i]! +#check_simp (a.set! i v).get i g ~> v +#check_simp (a.set! i v).get! i ~> (a.setIfInBounds i v)[i]! #check_simp (a.set! i v).getD i d ~> if i < a.size then v else d #check_simp (a.set! i v)[i] ~> v -- Checks with different index values. -#check_simp (a.set! i v)[j]'j_lt ~> (a.setD i v)[j]'_ -#check_simp (a.setD i v)[j]'j_lt !~> +#check_simp (a.set! i v)[j]'j_lt ~> (a.setIfInBounds i v)[j]'_ +#check_simp (a.setIfInBounds i v)[j]'j_lt !~> -- This doesn't work currently. -- It will be address in the comprehensive overhaul of array lemmas. diff --git a/BatteriesTest/help_cmd.lean b/BatteriesTest/help_cmd.lean index 23e3698b6d..f76f95c8c9 100644 --- a/BatteriesTest/help_cmd.lean +++ b/BatteriesTest/help_cmd.lean @@ -148,13 +148,12 @@ error: no syntax categories start with foobarbaz #help cats foobarbaz /-- -info: -category prec [Lean.Parser.Category.prec] +info: category prec [Lean.Parser.Category.prec] `prec` is a builtin syntax category for precedences. A precedence is a value that expresses how tightly a piece of syntax binds: for example `1 + 2 * 3` is - parsed as `1 + (2 * 3)` because `*` has a higher pr0ecedence than `+`. + parsed as `1 + (2 * 3)` because `*` has a higher precedence than `+`. Higher numbers denote higher precedence. - In addition to literals like `37`, there are some special named priorities: + In addition to literals like `37`, there are some special named precedence levels: * `arg` for the precedence of function arguments * `max` for the highest precedence used in term parsers (not actually the maximum possible value) * `lead` for the precedence of terms not supposed to be used as arguments diff --git a/BatteriesTest/lint_simpNF.lean b/BatteriesTest/lint_simpNF.lean index c9c8f9d307..771e47c65a 100644 --- a/BatteriesTest/lint_simpNF.lean +++ b/BatteriesTest/lint_simpNF.lean @@ -38,4 +38,17 @@ theorem foo_eq_ite (n : Nat) : foo n = if n = n then n else 0 := by end Equiv +namespace List + +private axiom test_sorry : ∀ {α}, α + +@[simp] +theorem ofFn_getElem_eq_map {β : Type _} (l : List α) (f : α → β) : + ofFn (fun i : Fin l.length => f <| l[(i : Nat)]) = l.map f := test_sorry + +example {β : Type _} (l : List α) (f : α → β) : + ofFn (fun i : Fin l.length => f <| l[(i : Nat)]) = l.map f := by simp only [ofFn_getElem_eq_map] + +end List + #lint- only simpNF diff --git a/BatteriesTest/show_term.lean b/BatteriesTest/show_term.lean index 7288c369e9..1986fc06ee 100644 --- a/BatteriesTest/show_term.lean +++ b/BatteriesTest/show_term.lean @@ -11,7 +11,7 @@ Authors: Kim Morrison exact n exact 37 -/-- info: Try this: refine (?fst, ?snd) -/ +/-- info: Try this: refine (?_, ?_) -/ #guard_msgs in example : Nat × Nat := by show_term constructor repeat exact 42 diff --git a/lean-toolchain b/lean-toolchain index 1e70935f69..cf25a9816f 100644 --- a/lean-toolchain +++ b/lean-toolchain @@ -1 +1 @@ -leanprover/lean4:v4.14.0 +leanprover/lean4:v4.15.0-rc1