This repository has been archived by the owner on Jun 29, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTWanalyzer.py
1378 lines (1101 loc) · 49.9 KB
/
TWanalyzer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#! /usr/bin/env python
###################################################################
## ##
## Name: TWkinematics.py ##
## Author: Kevin Nash ##
## Date: 6/5/2012 ##
## Purpose: This program performs the main analysis. ##
## It takes the tagrates created by ##
## TWrate_Maker.py stored in fitdata, and uses ##
## them to weigh pre b tagged samples to create a ##
## QCD background estimate along with the full event ##
## selection to product Mtw inputs to Theta ##
## ##
###################################################################
import os
import glob
import math
from math import sqrt
#import quickroot
#from quickroot import *
import ROOT
from ROOT import *
import sys
#from DataFormats.FWLite import Events, Handle
from optparse import OptionParser
parser = OptionParser()
parser.add_option('-s', '--set', metavar='F', type='string', action='store',
default = 'data',
dest = 'set',
help = 'data or ttbar')
parser.add_option('-x', '--pileup', metavar='F', type='string', action='store',
default = 'on',
dest = 'pileup',
help = 'If not data do pileup reweighting?')
parser.add_option('-n', '--num', metavar='F', type='string', action='store',
default = 'all',
dest = 'num',
help = 'job number')
parser.add_option('-y', '--modmass', metavar='F', type='string', action='store',
default = 'nominal',
dest = 'modmass',
help = 'nominal up or down')
parser.add_option('-j', '--jobs', metavar='F', type='string', action='store',
default = '1',
dest = 'jobs',
help = 'number of jobs')
parser.add_option('-t', '--tname', metavar='F', type='string', action='store',
default = 'HLT_PFHT900,HLT_PFHT800,HLT_JET450',
dest = 'tname',
help = 'trigger name')
parser.add_option('-J', '--JES', metavar='F', type='string', action='store',
default = 'nominal',
dest = 'JES',
help = 'nominal, up, or down')
parser.add_option('-R', '--JER', metavar='F', type='string', action='store',
default = 'nominal',
dest = 'JER',
help = 'nominal, up, or down')
parser.add_option('-a', '--JMS', metavar='F', type='string', action='store',
default = 'nominal',
dest = 'JMS',
help = 'nominal, up, or down')
parser.add_option('-b', '--JMR', metavar='F', type='string', action='store',
default = 'nominal',
dest = 'JMR',
help = 'nominal, up, or down')
parser.add_option('-m', '--modulesuffix', metavar='F', type='string', action='store',
default = 'none',
dest = 'modulesuffix',
help = 'ex. PtSmearUp')
parser.add_option('-g', '--grid', metavar='F', type='string', action='store',
default = 'off',
dest = 'grid',
help = 'running on grid off or on')
parser.add_option('-u', '--ptreweight', metavar='F', type='string', action='store',
default = 'on',
dest = 'ptreweight',
help = 'on or off')
parser.add_option('-T', '--ttsub', metavar='F', type='string', action='store',
default = 'on',
dest = 'ttsub',
help = 'on, off, or double')
parser.add_option('-p', '--pdfweights', metavar='F', type='string', action='store',
default = 'nominal',
dest = 'pdfweights',
help = 'nominal, up, or down')
parser.add_option('-z', '--pdfset', metavar='F', type='string', action='store',
default = 'cteq66',
dest = 'pdfset',
help = 'pdf set')
parser.add_option('--printEvents', metavar='F', action='store_true',
default=False,
dest='printEvents',
help='Print events that pass selection (run:lumi:event)')
parser.add_option('--noExtraPtCorrection', metavar='F', action='store_false',
default=True,
dest='extraPtCorrection',
help='Call to turn off extraPtCorrection')
parser.add_option('-c', '--cuts', metavar='F', type='string', action='store',
default = 'default',
dest = 'cuts',
help = 'Cuts type (ie default, rate, etc)')
parser.add_option('-v', '--var', metavar='F', type='string', action='store',
default = 'analyzer',
dest = 'var',
help = 'anaylzer or kinematics')
parser.add_option('-S', '--split', metavar='F', type='string', action='store',
default = 'event',
dest = 'split',
help = 'split by event of file') # file splitting doesn't work with ttrees
parser.add_option('-A', '--Alphabet', metavar='F', type='string', action='store',
default = 'off',
dest = 'Alphabet',
help = 'turn alphabet on or off')
parser.add_option('-r', '--rate', metavar='F', type='string', action='store',
default = 'tpt',
dest = 'rate',
help = 'tpt, Mt, Mtw')
parser.add_option('-C', '--cheat', metavar='F', type='string', action='store',
default = 'off',
dest = 'cheat',
help = 'on or off')
parser.add_option('-i', '--iteration', metavar='F', type='int', action='store',
default = -1,
dest = 'iteration',
help = 'Scale factor iteration. Default 0')
(options, args) = parser.parse_args()
if (options.set.find('QCD') != -1):
setstr = 'QCD'
else:
setstr = 'data'
print "Options summary"
print "=================="
for opt,value in options.__dict__.items():
#print str(option)+ ": " + str(options[option])
print str(opt) +': '+ str(value)
print "=================="
print ""
di = ""
if options.grid == 'on':
di = "tardir/"
sys.path.insert(0, 'tardir/')
gROOT.Macro(di+"rootlogon.C")
import Bstar_Functions
from Bstar_Functions import *
tname = options.tname.split(',')
tnamestr = ''
for iname in range(0,len(tname)):
tnamestr+=tname[iname]
if iname!=len(tname)-1:
tnamestr+='OR'
if tnamestr=='HLT_PFHT900ORHLT_PFHT800ORHLT_JET450':
tnameformat='nominal'
elif tnamestr=='':
tnameformat='none'
else:
tnameformat=tnamestr
pie = math.pi
#Load up cut values based on what selection we want to run
if options.cuts == 'lowWmass' or options.cuts == 'highWmass':
Cuts = LoadCuts('default')
elif options.cuts == 'lowWmass1' or options.cuts == 'highWmass1':
Cuts = LoadCuts('sideband')
else:
Cuts = LoadCuts(options.cuts)
wpt = Cuts['wpt']
tpt = Cuts['tpt']
dy = Cuts['dy']
tmass = Cuts['tmass']
tau32 = Cuts['tau32']
tau21 = Cuts['tau21']
sjbtag = Cuts['sjbtag']
wmass = Cuts['wmass']
eta1 = Cuts['eta1']
eta2 = Cuts['eta2']
eta = Cuts['eta']
Cons = LoadConstants()
lumi = Cons['lumi']
Lumi = str(lumi/1000)+'fb'
Lumi2 = str(int(lumi)) + 'pb'
ttagsf = Cons['ttagsf']
if options.cuts.find('rate') != -1:
Wpurity = 'LP'
wtagsf = Cons['wtagsf_LP']
wtagsfsig = Cons['wtagsfsig_LP']
else:
Wpurity = 'HP'
wtagsf = Cons['wtagsf_HP']
wtagsfsig = Cons['wtagsfsig_HP']
#For large datasets we need to parallelize the processing
jobs=int(options.jobs)
if jobs != 1:
num=int(options.num)
jobs=int(options.jobs)
print "Running over " +str(jobs)+ " jobs"
print "This will process job " +str(num)
else:
print "Running over all events"
#This section defines some strings that are used in naming the output files
#-- Postuncorr is used for softdrop mass, post is used for LV
mod = ''
post = ''
post2 = ''
if options.JES!='nominal':
mod = mod + 'JES' + '_' + options.JES
post='jes'+options.JES
if options.JER!='nominal':
mod = mod + 'JER' + '_' + options.JER
post='jer'+options.JER
if options.JMS!='nominal':
mod = mod + 'JMS' + '_' + options.JMS
post2='jes'+options.JMS
if options.JMR!='nominal':
mod = mod + 'JMR' + '_' + options.JMR
post2='jer'+options.JMR
#----------------Need to grab extra top pt reweight factor-------------------
# Naming syntax
# - ptItString: only non-empty for doing the iterations study, assigned to all files
# - ptTTString: always empty for non-ttbar, empty for ttbar when doing iterations
ptItString = ''
ptTTString = ''
# # If we're not running the study
# if options.iteration == -1:
# # And we want the extra correction turned on
# if options.extraPtCorrection:
# # Grab the latest SF and don't do any renaming
# ptTTString = ''
# TopPtReweightFile = TFile(di+'TWTopPtSF_9.root')
# TopPtReweightPlot = TopPtReweightFile.Get('TWTopPtSF_9')
# # And we don't want the extra correction turned on
# elif not options.extraPtCorrection:
# ptTTString = '_noExtraPtCorrection'
# TopPtReweightFile = TFile(di+'TWTopPtSF_0.root')
# TopPtReweightPlot = TopPtReweightFile.Get('TWTopPtSF_0')
# # And we don't want any pt correction
# elif options.ptreweight == 'off':
# ptTTString = '_ptreweight_off'
# # If we are running the pt study
# elif options.iteration >=0:
# ptTTString = '_ptSF' + str(options.iteration)
# TopPtReweightFile = TFile(di+'TWTopPtSF_'+str(options.iteration)+'.root')
# TopPtReweightPlot = TopPtReweightFile.Get('TWTopPtSF_'+str(options.iteration))
ptTTString = ''
if options.set == 'ttbar':
if not options.extraPtCorrection:
ptTTString = '_noExtraPtCorrection'
if options.ptreweight == 'off':
ptTTString = '_ptreweight_off'
#----------------------------------------------------------------------------
#TTbar subtraction string is set here for non-qcd
ttsubString = ''
if setstr == 'data':
if options.ttsub == 'on':
ttsubString = ''
elif options.ttsub == 'off':
ttsubString = '_nottsub'
elif options.ttsub == 'double':
ttsubString = '_doublettsub'
pstr = ""
if options.pdfweights!="nominal":
print "using pdf uncertainty"
pstr = "_pdf_"+options.pdfweights
pustr = ""
if options.pileup=='off':
pustr = "_pileup_unweighted"
if options.pileup=='up':
pustr = "_pileup_up"
if options.pileup=='down':
pustr = "_pileup_down"
if mod == '':
mod = options.modulesuffix
print "mod = " + mod
mmstr = ""
if options.modmass!="nominal":
print "using modm uncertainty"
mmstr = "_modm_"+options.modmass
#------------------------------------------------------------------------
#Based on what set we want to analyze, we find all Ntuple root files
if options.grid == "on":
mainDir = "root://cmsxrootd.fnal.gov//store/user/lcorcodi/TTrees/"
else:
mainDir='TTrees/'
file = TFile.Open(mainDir + "TWtreefile_"+options.set+"_Trigger_"+tnameformat+"_"+mod+".root")
tree = file.Get("Tree")
settype = 'ttbar'
#CHANGE BACK if we get signal pileup
# if (options.set.find('ttbar') != -1) or (options.set.find('signal') != -1):
# settype = 'ttbar'
# else :
# settype = options.set
# print 'The type of set is ' + settype
#---------------Modmass file if you dont want alphabet-----------------------
if options.cheat == 'off':
rateCuts = 'rate_'+options.cuts
elif options.cheat == 'on':
rateCuts = options.cuts
# if rateCuts == 'rate_sideband1':
# rateCuts = 'rate_default'
if options.Alphabet != "on":
ModFile = ROOT.TFile(di+"ModMassFile_"+rateCuts+ptTTString+".root")
ModPlot = ModFile.Get("rtmass")
# if options.rate == 'tpt':
# ModFitParams = open(di+'fitdata/ModMass_pol3_PSET_rate_'+options.cuts+'.txt')
# else:
# ModFitParams = open(di+'fitdata/'+options.rate+'/ModMass_pol3_PSET_rate_'+options.cuts+'.txt')
# ModFitParams.seek(0)
# ModFit = TF1("ModFit",'pol3',tmass[0],tmass[1])
# ModFitParams2 = ModFitParams.read()
# for i in range(0,4):
# ModFit.SetParameter(i,float(ModFitParams2.split('\n')[i]) )
# ModFile = ROOT.TFile(di+"ModMassFile_"+options.cuts+".root")
# ModPlot = ModFile.Get("rtmass")
if options.set != 'data':
#Load up scale factors (to be used for MC only)
TrigFile = TFile(di+"Triggerweight_2jethack_data.root")
TrigPlot = TrigFile.Get("TriggerWeight_"+tnamestr+"_pre_HLT_PFHT475")
if settype == 'ttbar':
PileFile = TFile(di+"PileUp_Ratio_"+settype+".root")
if options.pileup=='up':
PilePlot = PileFile.Get("Pileup_Ratio_up")
elif options.pileup=='down':
PilePlot = PileFile.Get("Pileup_Ratio_down")
else:
PilePlot = PileFile.Get("Pileup_Ratio")
nevHisto = file.Get("nev")
B2Gnev = nevHisto.Integral()/jobs
# For some reason, the above line makes python forget what `tpt` is so redifining
tpt = Cuts['tpt']
#---------------------------------------------------------------------------------------------------------------------#
# var = ""
# if options.var == "kinematics":
# var = "_kin"
alphaString = ''
if options.Alphabet == 'on':
alphaString = 'alphabet_on'
MtwBinSides = []
# Have to grab the Mtw bins from the Alphabet output file
binsFile = TFile.Open(di+'Alphabet/results/'+options.cuts+'/MtwvsBkg_'+setstr+'_mtfit_quad_cheat_narrow.root')
binsHist = binsFile.Get('binsHist')
for ibin in range(binsHist.GetXaxis().GetNbins()+1):
# Store the ints in a list
MtwBinSides.append(binsHist.GetXaxis().GetBinLowEdge(ibin+1))
# Need a list of strings so we can grab the fit files
# Need a list of pairs of ints so we can make the cuts
print MtwBinSides
sMtwCuts = []
iMtwCuts = []
for iside in range(0,len(MtwBinSides)-1):
lowWall = int(MtwBinSides[iside])
highWall = int(MtwBinSides[iside+1])
sMtwCuts.append(str(lowWall)+'-'+str(highWall))
iMtwCuts.append([lowWall,highWall])
print sMtwCuts
print iMtwCuts
if jobs != 1:
f = TFile( "TWanalyzer"+options.set+"_Trigger_"+tnameformat+"_"+mod+pustr+pstr+mmstr+"_job"+options.num+"of"+options.jobs+"_PSET_"+options.cuts+ttsubString+ptTTString+alphaString+".root", "recreate" )
else:
f = TFile( "TWanalyzer"+options.set+"_Trigger_"+tnameformat+"_"+mod+pustr+pstr+mmstr+"_PSET_"+options.cuts+ttsubString+ptTTString+alphaString+".root", "recreate" )
#Load up the average t-tagging rates -- Takes parameters from text file and makes a function
#CHANGE BACK
if options.Alphabet == "on":
TagFiles = []
RpfFits = []
ErrHists = []
for MtwCuts in sMtwCuts:
print 'opening ' + di+'Alphabet/results/'+options.cuts+'/Alphabet'+setstr+'_'+options.cuts+'_Mtw_'+MtwCuts+'.root'
thisFile = TFile.Open(di+'Alphabet/results/'+options.cuts+'/Alphabet'+setstr+'_'+options.cuts+'_Mtw_'+MtwCuts+'.root')
TagFiles.append(thisFile)
print 'Getting fit'
RpfFits.append(thisFile.Get('fit'))
ErrHists.append(thisFile.Get('EH'))
print 'Got all fits'
fittitles = []
elif options.Alphabet == "off":
TagFile = TFile(di+"plots/TWrate_Maker_"+setstr+"_"+Lumi2+"_PSET_"+rateCuts+ttsubString+ptTTString+".root")
print "Opening rate file " + "plots/TWrate_Maker_"+setstr+"_"+Lumi2+"_PSET_"+rateCuts+ttsubString+ptTTString+".root"
TagPlote1 = TagFile.Get("tagrateeta1")
TagPlote2 = TagFile.Get("tagrateeta2")
TTR = TTR_Init('Bifpoly',rateCuts,setstr,options.rate,di,ttsubString+ptTTString)
TTR_err = TTR_Init('Bifpoly_err',rateCuts,setstr,options.rate,di,ttsubString+ptTTString)
fittitles = ["pol0","pol2","pol3","FIT","Bifpoly","expofit"]
fits = []
for fittitle in fittitles:
fits.append(TTR_Init(fittitle,rateCuts,setstr,options.rate,di,ttsubString+ptTTString))
TagFile1 = TFile(di+"Tagrate"+setstr+"2D_"+rateCuts+ttsubString+ptTTString+".root")
TagPlot2de1= TagFile1.Get("tagrateeta1")
TagPlot2de2= TagFile1.Get("tagrateeta2")
print "Creating histograms"
f.cd()
#---------------------------------------------------------------------------------------------------------------------#
Mtw = TH1F("Mtw", "mass of tw", 140, 500, 4000 )
nev = TH1F("nev", "nev", 1, 0, 1 )
hEta1Count = TH1I("eta1Count", "number of events in low eta region", 1, 0, 1)
hEta2Count = TH1I("eta2Count", "number of events in high eta region", 1, 0, 1)
hmatchingFailed = TH1F("matchingFailed", "fraction of events that failed w jet matching requirement", 1, 0, 1)
Mtwtrigup = TH1F("Mtwtrigup", "mass of tw trig up", 140, 500, 4000 )
Mtwtrigdown = TH1F("Mtwtrigdown", "mass of tw trig up", 140, 500, 4000 )
MtwWup = TH1F("MtwWup", "mass of tw w tag SF up", 140, 500, 4000 )
MtwWdown = TH1F("MtwWdown", "mass of tw w tag SF down", 140, 500, 4000 )
MtwTptup = TH1F("MtwTptup", "mass of tw top pt reweight up", 140, 500, 4000 )
MtwTptdown = TH1F("MtwTptdown", "mass of tw top pt reweight down", 140, 500, 4000 )
MtwExtrapUp = TH1F("MtwExtrapUp", "mass of top extrapolation uncertainty up", 140, 500, 4000)
MtwExtrapDown = TH1F("MtwExtrapDown", "mass of top extrapolation uncertainty down", 140, 500, 4000)
Nevents = TH1F("Nevents", "mass of tb", 5, 0., 5. )
QCDbkg= TH1F("QCDbkg", "QCD background estimate", 140, 500, 4000 )
QCDbkgh= TH1F("QCDbkgh", "QCD background estimate up error", 140, 500, 4000 )
QCDbkgl= TH1F("QCDbkgl", "QCD background estimate down error", 140, 500, 4000 )
if options.Alphabet == "off":
QCDbkg2D= TH1F("QCDbkg2D", "QCD background estimate 2d error", 140, 500, 4000 )
QCDbkg2Dup= TH1F("QCDbkg2Dup", "QCD background estimate 2d error", 140, 500, 4000 )
QCDbkg2Ddown= TH1F("QCDbkg2Ddown", "QCD background estimate 2d error", 140, 500, 4000 )
preAntiTag = TH1F("preAntiTag", "Antitag distribution before R p/f weighting", 140, 500, 4000 )
preAntiTag.Sumw2()
Antitag = TH1F("Antitag", "Antitag distribution before R p/f weighting", 140, 500, 4000 )
Antitag.Sumw2()
MwStack = TH1F("MwStack", "top candidate mass for stack", 100, 105, 210 )
QCDbkgMwStack = TH1F("QCDbkgMwStack", "QCD background for top mass", 100, 105, 210 )
masswHist = TH1F("Massw", "Massw", 25, 0, 5 )
masswHist.Sumw2()
Mtw.Sumw2()
Mtwtrigup.Sumw2()
Mtwtrigdown.Sumw2()
MtwWup.Sumw2()
MtwWdown.Sumw2()
MtwTptup.Sumw2()
MtwTptdown.Sumw2()
MtwExtrapUp.Sumw2()
MtwExtrapDown.Sumw2()
QCDbkg.Sumw2()
QCDbkgh.Sumw2()
QCDbkgl.Sumw2()
MwStack.Sumw2()
QCDbkgMwStack.Sumw2()
Mtw_cut1 = TH1F("Mtw_cut1", "mass of tw after wpt cut", 140, 500, 4000)
Mtw_cut2 = TH1F("Mtw_cut2", "mass of tw after tpt cut", 140, 500, 4000)
Mtw_cut3 = TH1F("Mtw_cut3", "mass of tw after dy cut", 140, 500, 4000)
Mtw_cut4 = TH1F("Mtw_cut4", "mass of tw after tmass cut", 140, 500, 4000)
Mtw_cut5 = TH1F("Mtw_cut5", "mass of tw after tau21 cut", 140, 500, 4000)
Mtw_cut6 = TH1F("Mtw_cut6", "mass of tw after wmass cut", 140, 500, 4000)
Mtw_cut7 = TH1F("Mtw_cut7", "mass of tw after eta1 cut", 140, 500, 4000)
Mtw_cut8 = TH1F("Mtw_cut8", "mass of tw after eta2 cut", 140, 500, 4000)
Mtw_cut9 = TH1F("Mtw_cut9", "mass of tw after sjbtag cut", 140, 500, 4000)
Mtw_cut10 = TH1F("Mtw_cut10", "mass of tw after tau32 cut", 140, 500, 4000)
EtaTop = TH1F("EtaTop", "Top Candidate eta", 12, -2.4, 2.4 )
EtaW = TH1F("EtaW", "W Candidate eta", 12, -2.4, 2.4 )
PtTop = TH1F("PtTop", "Top Candidate pt (GeV)", 50, 450, 1500 )
PtW = TH1F("PtW", "W Candidate pt (GeV)", 50, 370, 1430 )
PtTopW = TH1F("PtTopW", "pt of tw system", 35, 0, 700 )
PhiTop = TH1F("PhiTop", "Top Candidate Phi (rad)", 12, -pie, pie )
PhiW = TH1F("PhiW", "Top Candidate Phi (rad)", 12, -pie, pie )
dPhi = TH1F("dPhi", "delta theat between Top and W Candidates", 12, 2.2, pie )
Mt = TH1F("Mt", "Top mass", 25,105,210)
Nsubjetiness32 = TH1F("Nsubjetiness32", "Nsubjetiness", 8,0,1.6)
Nsubjetiness21 = TH1F("Nsubjetiness21", "Nsubjetiness", 8,0,1.6)
deltaY = TH1F("deltaY", "delta y between Top and b candidates", 10,0,5)
CSV = TH1F("CSV", "CSV", 10,0,1)
CSVMax = TH1F("CSVMax", "CSV maximum", 10,0,1)
Btag = TH1F("Btag", "Tagged bs", 4,0,4)
Btagmax = TH1F("Btagmax", "Max value of b disc", 30,0,1)
Btruth = TH1F("Btruth", "MC Truth for bs", 4,0,4)
JetsVsBtag = TH2F("JetsVsBtag", "Jets vs Btag", 4,0,4, 30,0,30)
QCDbkgET = TH1F("QCDbkgET", "QCD background estimate eta top", 12, -2.4, 2.4 )
QCDbkgETh= TH1F("QCDbkgETh", "QCD background estimate up error", 12, -2.4, 2.4 )
QCDbkgETl= TH1F("QCDbkgETl", "QCD background estimate down error", 12, -2.4, 2.4 )
if options.Alphabet == "off":
QCDbkgET2D= TH1F("QCDbkgET2D", "QCD background estimate 2d error", 12, -2.4, 2.4 )
QCDbkgET2Dup= TH1F("QCDbkgET2Dup", "QCD background estimate 2d error", 12, -2.4, 2.4 )
QCDbkgET2Ddown= TH1F("QCDbkgET2Ddown", "QCD background estimate 2d error", 12, -2.4, 2.4 )
QCDbkgEW = TH1F("QCDbkgEW", "QCD background estimate eta w", 12, -2.4, 2.4 )
QCDbkgEWh= TH1F("QCDbkgEWh", "QCD background estimate up error", 12, -2.4, 2.4 )
QCDbkgEWl= TH1F("QCDbkgEWl", "QCD background estimate down error", 12, -2.4, 2.4 )
if options.Alphabet == "off":
QCDbkgEW2D= TH1F("QCDbkgEW2D", "QCD background estimate 2d error", 12, -2.4, 2.4 )
QCDbkgEW2Dup= TH1F("QCDbkgEW2Dup", "QCD background estimate 2d error", 12, -2.4, 2.4 )
QCDbkgEW2Ddown= TH1F("QCDbkgEW2Ddown", "QCD background estimate 2d error", 12, -2.4, 2.4 )
QCDbkgPT = TH1F("QCDbkgPT", "QCD background estimate pt top", 50, 450, 1500 )
QCDbkgPTh= TH1F("QCDbkgPTh", "QCD background estimate up error", 50, 450, 1500 )
QCDbkgPTl= TH1F("QCDbkgPTl", "QCD background estimate down error", 50, 450, 1500 )
if options.Alphabet == "off":
QCDbkgPT2D= TH1F("QCDbkgPT2D", "QCD background estimate 2d error", 50, 450, 1500 )
QCDbkgPT2Dup= TH1F("QCDbkgPT2Dup", "QCD background estimate 2d error", 50, 450, 1500 )
QCDbkgPT2Ddown= TH1F("QCDbkgPT2Ddown", "QCD background estimate 2d error", 50, 450, 1500 )
QCDbkgPW = TH1F("QCDbkgPW", "QCD background estimate pt W", 50, 370, 1430 )
QCDbkgPWh= TH1F("QCDbkgPWh", "QCD background estimate up error", 50, 370, 1430 )
QCDbkgPWl= TH1F("QCDbkgPWl", "QCD background estimate down error", 50, 370, 1430 )
if options.Alphabet == "off":
QCDbkgPW2D= TH1F("QCDbkgPW2D", "QCD background estimate 2d error", 50, 370, 1430 )
QCDbkgPW2Dup= TH1F("QCDbkgPW2Dup", "QCD background estimate 2d error", 50, 370, 1430 )
QCDbkgPW2Ddown= TH1F("QCDbkgPW2Ddown", "QCD background estimate 2d error", 50, 370, 1430 )
QCDbkgPTW = TH1F("QCDbkgPTW", "QCD background estimate pt top+w", 35, 0, 700 )
QCDbkgPTWh= TH1F("QCDbkgPTWh", "QCD background estimate up error", 35, 0, 700 )
QCDbkgPTWl= TH1F("QCDbkgPTWl", "QCD background estimate down error", 35, 0, 700 )
if options.Alphabet == "off":
QCDbkgPTW2D= TH1F("QCDbkgPTW2D", "QCD background estimate 2d error", 35, 0, 700 )
QCDbkgPTW2Dup= TH1F("QCDbkgPTW2Dup", "QCD background estimate 2d error", 35, 0, 700 )
QCDbkgPTW2Ddown= TH1F("QCDbkgPTW2Ddown", "QCD background estimate 2d error", 35, 0, 700 )
QCDbkgPhT = TH1F("QCDbkgPhT", "QCD background estimate phi top", 12, -pie, pie )
QCDbkgPhTh= TH1F("QCDbkgPhTh", "QCD background estimate up error", 12, -pie, pie )
QCDbkgPhTl= TH1F("QCDbkgPhTl", "QCD background estimate down error", 12, -pie, pie )
if options.Alphabet == "off":
QCDbkgPhT2D= TH1F("QCDbkgPhT2D", "QCD background estimate 2d error", 12, -pie, pie )
QCDbkgPhT2Dup= TH1F("QCDbkgPhT2Dup", "QCD background estimate 2d error", 12, -pie, pie )
QCDbkgPhT2Ddown= TH1F("QCDbkgPhT2Ddown", "QCD background estimate 2d error", 12, -pie, pie )
QCDbkgPhW = TH1F("QCDbkgPhW", "QCD background estimate phi w", 12, -pie, pie )
QCDbkgPhWh= TH1F("QCDbkgPhWh", "QCD background estimate up error", 12, -pie, pie )
QCDbkgPhWl= TH1F("QCDbkgPhWl", "QCD background estimate down error", 12, -pie, pie )
if options.Alphabet == "off":
QCDbkgPhW2D= TH1F("QCDbkgPhW2D", "QCD background estimate 2d error", 12, -pie, pie )
QCDbkgPhW2Dup= TH1F("QCDbkgPhW2Dup", "QCD background estimate 2d error", 12, -pie, pie )
QCDbkgPhW2Ddown= TH1F("QCDbkgPhW2Ddown", "QCD background estimate 2d error", 12, -pie, pie )
QCDbkgdPhi = TH1F("QCDbkgdPhi", "QCD background estimate delta phi", 12, 2.2, pie )
QCDbkgdPhih= TH1F("QCDbkgdPhih", "QCD background estimate up error", 12, 2.2, pie )
QCDbkgdPhil= TH1F("QCDbkgdPhil", "QCD background estimate down error", 12, 2.2, pie )
if options.Alphabet == "off":
QCDbkgdPhi2D= TH1F("QCDbkgdPhi2D", "QCD background estimate 2d error", 12, 2.2, pie )
QCDbkgdPhi2Dup= TH1F("QCDbkgdPhi2Dup", "QCD background estimate 2d error", 12, 2.2, pie )
QCDbkgdPhi2Ddown= TH1F("QCDbkgdPhi2Ddown", "QCD background estimate 2d error", 12, 2.2, pie )
QCDbkgMt = TH1F("QCDbkgMt", "QCD background estimate top mass", 25,105,210 )
QCDbkgMth= TH1F("QCDbkgMth", "QCD background estimate up error", 25,105,210 )
QCDbkgMtl= TH1F("QCDbkgMtl", "QCD background estimate down error", 25,105,210 )
if options.Alphabet == "off":
QCDbkgMt2D= TH1F("QCDbkgMt2D", "QCD background estimate 2d error", 25,105,210 )
QCDbkgMt2Dup= TH1F("QCDbkgMt2Dup", "QCD background estimate 2d error", 25,105,210 )
QCDbkgMt2Ddown= TH1F("QCDbkgMt2Ddown", "QCD background estimate 2d error", 25,105,210 )
Mtw_cut1.Sumw2()
Mtw_cut2.Sumw2()
Mtw_cut3.Sumw2()
Mtw_cut4.Sumw2()
Mtw_cut5.Sumw2()
Mtw_cut6.Sumw2()
Mtw_cut7.Sumw2()
Mtw_cut8.Sumw2()
Mtw_cut9.Sumw2()
Mtw_cut10.Sumw2()
EtaTop.Sumw2()
EtaW.Sumw2()
PtTop.Sumw2()
PtW.Sumw2()
PtTopW.Sumw2()
PhiTop.Sumw2()
PhiW.Sumw2()
dPhi.Sumw2()
Mt.Sumw2()
Nsubjetiness32.Sumw2()
Nsubjetiness21.Sumw2()
deltaY.Sumw2()
CSV.Sumw2()
CSVMax.Sumw2()
Btag.Sumw2()
Btagmax.Sumw2()
Btruth.Sumw2()
JetsVsBtag.Sumw2()
QCDbkgET.Sumw2()
QCDbkgETh.Sumw2()
QCDbkgETl.Sumw2()
QCDbkgEW.Sumw2()
QCDbkgEWh.Sumw2()
QCDbkgEWl.Sumw2()
QCDbkgPT.Sumw2()
QCDbkgPTh.Sumw2()
QCDbkgPTl.Sumw2()
QCDbkgPW.Sumw2()
QCDbkgPWh.Sumw2()
QCDbkgPWl.Sumw2()
QCDbkgPTW.Sumw2()
QCDbkgPTWh.Sumw2()
QCDbkgPTWl.Sumw2()
QCDbkgPhT.Sumw2()
QCDbkgPhTh.Sumw2()
QCDbkgPhTl.Sumw2()
QCDbkgPhW.Sumw2()
QCDbkgPhWh.Sumw2()
QCDbkgPhWl.Sumw2()
QCDbkgdPhi.Sumw2()
QCDbkgdPhih.Sumw2()
QCDbkgdPhil.Sumw2()
QCDbkgMt.Sumw2()
QCDbkgMth.Sumw2()
QCDbkgMtl.Sumw2()
QCDbkg_ARR = []
kinVars = ['', 'ET', 'EW', 'PT', 'PW', 'PTW', 'PhT', 'PhW', 'dPhi', 'Mt' ]
kinBin = [140, 12, 12, 50, 50, 35, 12, 12, 12, 25 ]
kinLow = [500, -2.4, -2.4, 450, 370, 0, -pie, -pie, 2.2, 105 ]
kinHigh = [4000, 2.4, 2.4, 1500, 1430, 700, pie, pie, pie, 210 ]
# if options.var == 'analyzer':
# iterations = 1
# elif options.var == 'kinematics':
# iterations = len(kinVars)
# else:
# print "You messed up the var options bozo"
# quit()
iterations = len(kinVars)
arr_count = 0
for iVar in range(0,iterations):
for ihist in fittitles:
QCDbkg_ARR.append(TH1F("QCDbkg"+kinVars[iVar]+ihist, str(kinVars[iVar]) + "in b+1 pt est etabin", kinBin[iVar], kinLow[iVar], kinHigh[iVar]))
QCDbkg_ARR[arr_count].Sumw2()
arr_count += 1
#---------------------------------------------------------------------------------------------------------------------#
# loop over events
#---------------------------------------------------------------------------------------------------------------------#
eta1Count = 0
eta2Count = 0
matchingFailed = 0
count = 0
jobiter = 0
print "Start looping"
#initialize the ttree variables
tree_vars = { "wpt":array('d',[0.]),
"wmass":array('d',[0.]),
"tpt":array('d',[0.]),
"tmass":array('d',[0.]),
"tau32":array('d',[0.]),
"tau21":array('d',[0.]),
"sjbtag":array('d',[0.]),
"flavor":array('d',[0.]),
"mtw":array('d',[0.]),
"weight":array('d',[0.])}
NewTree = Make_Trees(tree_vars)
treeEntries = tree.GetEntries()
goodEvents = []
# Design the splitting if necessary
if jobs != 1:
evInJob = int(treeEntries/jobs)
lowBinEdge = evInJob*(num-1)
highBinEdge = evInJob*num
if num == jobs:
highBinEdge = treeEntries
else:
lowBinEdge = 0
highBinEdge = treeEntries
nev.SetBinContent(1,B2Gnev)
print "Range of events: (" + str(lowBinEdge) + ", " + str(highBinEdge) + ")"
for entry in range(lowBinEdge,highBinEdge):
# Have to grab tree entry first
tree.GetEntry(entry)
count = count + 1
if count % 100000 == 0 :
print '--------- Processing Event ' + str(count) +' -- percent complete ' + str(100*count/(highBinEdge-lowBinEdge)) + '% -- '
doneAlready = False
for hemis in ['hemis0','hemis1']:
if hemis == 'hemis0':
# Load up the ttree values
tVals = {
"tau1":tree.tau1_leading,
"tau2":tree.tau2_leading,
"tau3":tree.tau3_leading,
"phi":tree.phi_leading,
"mass":tree.mass_leading,
"pt":tree.pt_leading,
"eta":tree.eta_leading,
"sjbtag":tree.sjbtag_leading,
"SDmass":tree.topSDmass_leading,
"flavor":tree.flavor_leading
}
wVals = {
"tau1":tree.tau1_subleading,
"tau2":tree.tau2_subleading,
"tau3":tree.tau3_subleading,
"phi":tree.phi_subleading,
"mass":tree.mass_subleading,
"pt":tree.pt_subleading,
"eta":tree.eta_subleading,
"sjbtag":tree.sjbtag_subleading,
"SDmass":tree.wSDmass_subleading
}
if hemis == 'hemis1' and doneAlready == False :
wVals = {
"tau1":tree.tau1_leading,
"tau2":tree.tau2_leading,
"tau3":tree.tau3_leading,
"phi":tree.phi_leading,
"mass":tree.mass_leading,
"pt":tree.pt_leading,
"eta":tree.eta_leading,
"sjbtag":tree.sjbtag_leading,
"SDmass":tree.wSDmass_leading
}
tVals = {
"tau1":tree.tau1_subleading,
"tau2":tree.tau2_subleading,
"tau3":tree.tau3_subleading,
"phi":tree.phi_subleading,
"mass":tree.mass_subleading,
"pt":tree.pt_subleading,
"eta":tree.eta_subleading,
"sjbtag":tree.sjbtag_subleading,
"SDmass":tree.topSDmass_subleading,
"flavor":tree.flavor_subleading
}
elif hemis == 'hemis1' and doneAlready == True:
continue
# # Check if there's a third jet
# if tree.pt_subsubleading > 0:
# continue
# Remake the lorentz vectors
tjet = TLorentzVector()
tjet.SetPtEtaPhiM(tVals["pt"],tVals["eta"],tVals["phi"],tVals["mass"])
wjet = TLorentzVector()
wjet.SetPtEtaPhiM(wVals["pt"],wVals["eta"],wVals["phi"],wVals["mass"])
weight = 1.0
dy_val = abs(tjet.Rapidity()-wjet.Rapidity())
MtopW = (tjet+wjet).M()
Mtw_cut1.Fill(MtopW,weight)
wpt_cut = wpt[0]<wjet.Perp()<wpt[1]
tpt_cut = tpt[0]<tjet.Perp()<tpt[1]
dy_cut = dy[0]<=dy_val<dy[1]
if wpt_cut and tpt_cut:
Mtw_cut2.Fill(MtopW,weight)
deltaY.Fill(dy_val,weight)
if dy_cut:
Mtw_cut3.Fill(MtopW,weight)
if options.pdfweights != "nominal" :
if options.pdfweights == 'up':
iweight = tree.pdf_weightUp
elif options.pdfweights == 'down':
iweight = tree.pdf_weightDown
weight *= iweight
# Apply top scale factor and pileup correction to all MC
# Got rid of uncertainties since they are flat and applied in theta
weightSFt = 1.0
if options.set!="data":
bin1 = tree.pileBin
if options.pileup != 'off':
weight *= PilePlot.GetBinContent(bin1)
if options.set.find("QCD") == -1:
weightSFt = ttagsf # Error done in theta
tmass_cut = tmass[0]<tVals["SDmass"]<tmass[1]
if tmass_cut :
Mtw_cut4.Fill(MtopW,weight)
ht = tjet.Perp() + wjet.Perp()
weight*=weightSFt
# Apply w tagging scale factor for anything that passes w jet matching requirement and is ST_tW or signal
weightSFwup = 1.0
weightSFwdown = 1.0
if tree.WJetMatchingRequirement == 1:
if options.set.find('tW') != -1 or options.set.find('signal') != -1:
weightSFwup = (wtagsf + wtagsfsig)*weight
weightSFwdown = (wtagsf - wtagsfsig)*weight
weight*=wtagsf
elif tree.WJetMatchingRequirement == 0:
matchingFailed += 1
weighttrigup=1.0
weighttrigdown=1.0
if tname != 'none' and options.set!='data' :
#Trigger reweighting done here
TRW = Trigger_Lookup( ht , TrigPlot )[0]
TRWup = Trigger_Lookup( ht , TrigPlot )[1]
TRWdown = Trigger_Lookup( ht , TrigPlot )[2]
weighttrigup=weight*TRWup
weighttrigdown=weight*TRWdown
weight*=TRW
weightSFwup*=TRW
weightSFwdown*=TRW
weightSFptup=1.0
weightSFptdown=1.0
if options.ptreweight == "on" and options.set.find('ttbar') != -1:
# ttbar pt reweighting done here
# extraCorrection = TopPtReweightPlot.GetBinContent(1) # Will be zero with iteration 0
if options.extraPtCorrection and ttsubString == '':
FlatPtSFFile = open(di+'bstar_theta_PtSF_onTOPgroupCorrection.txt','r')
FlatPtSFList = FlatPtSFFile.readlines()
extraCorrection = float(FlatPtSFList[0])
extraCorrectionUp = float(FlatPtSFList[1])
extraCorrectionDown = float(FlatPtSFList[2])
# print 'Pt scale correction = ' + str(1+extraCorrection)
FlatPtSFFile.close()
else:
extraCorrection = 0
extraCorrectionUp = 0
extraCorrectionDown = 0
PTW = tree.pt_reweight*(1+extraCorrection)
PTWup = tree.pt_reweight*(1+extraCorrection+extraCorrectionUp)
PTWdown = tree.pt_reweight*(1+extraCorrection-extraCorrectionDown)
# weightSFptSig = abs(weight - weight*PTW)
weightSFptup=weight*PTWup#PTW+weightSFptSig
weightSFptdown=weight*PTWdown#max(0.0,weight*PTW-weightSFptSig)
weight*=PTW
weightSFwup*=PTW
weightSFwdown*=PTW
weighttrigup*=PTW
weighttrigdown*=PTW
try:
tau32val = tVals["tau3"]/tVals["tau2"]
tau21val = wVals["tau2"]/wVals["tau1"]
except:
continue
tau21_cut = tau21[0]<=tau21val<tau21[1]
tau32_cut = tau32[0]<=tau32val<tau32[1]
SJ_csvval = tVals["sjbtag"]
sjbtag_cut = sjbtag[0]<SJ_csvval<=sjbtag[1]
CSVMax.Fill(SJ_csvval,weight)
Nsubjetiness32.Fill(tau32val,weight)
Nsubjetiness21.Fill(tau21val,weight)
if type(wmass[0]) is float:
wmass_cut = wmass[0]<=wVals["SDmass"]<wmass[1]
elif type(wmass[0]) is list:
wmass_cut = wmass[0][0]<=wVals["SDmass"]<wmass[0][1] or wmass[1][0]<=wVals["SDmass"]<wmass[1][1]
else:
print "wmass type error"
continue
FullTop = sjbtag_cut and tau32_cut
if tau21_cut:
Mtw_cut5.Fill(MtopW,weight)
if wmass_cut:
Mtw_cut6.Fill(MtopW,weight)
# Get the extrapolation uncertainty
extrap = ExtrapUncert_Lookup(wjet.Perp(),Wpurity)
extrapUp = weight*(1+extrap)
extrapDown = weight*(1-extrap)
# We've done the preselection and the W and top masses are orthogonal which means
# our tagged W can't be a top so we don't have to check the other hemi configuration