-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscalability.py
71 lines (55 loc) · 2.41 KB
/
scalability.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import argparse
import numpy as np
import pandas as pd
import time
from bridge_clustering import BridgeClustering
from pyod.models.lof import LOF
from sklearn.datasets import make_blobs
from sklearn.metrics import adjusted_rand_score
from pathlib import Path
from collections import defaultdict
def parse():
parser = argparse.ArgumentParser(description='Script used to launch the scalability tests with synthetic datasets')
parser.add_argument('-o', type=str, help='Output file name')
parser.add_argument('-t', type=str, help='Type of scalability test. Must be either "points" or "features".')
return parser.parse_args()
if __name__ == '__main__':
args = parse()
save_filename = args.o
scal_type = args.t
assert scal_type in {'points', 'features'}
if scal_type == 'points':
print('Scalability: points')
npoints = [100] + list(range(10_000, 150_001, 10_000))
ndims = [2]
elif scal_type == 'features':
print('Scalability: features')
ndims = [2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900, 1_000]
npoints = [20_000]
SEED = 47
savepath = Path('results', 'scalability')
savepath_full = savepath / save_filename
if not savepath.is_dir():
savepath.mkdir(parents=True)
df_dict = defaultdict(list)
for npoint in npoints:
for ndim in ndims:
print('_' * 50)
print(f'ndim: {ndim} - npoint: {npoint}')
print('generating dataset...')
X, y = make_blobs(n_samples=npoint, n_features=ndim, random_state=SEED)
print(f'generated dataset {X.shape}')
clf = BridgeClustering(outlier_detection=LOF(contamination=.2, n_neighbors=15), k=10)
print('starting fit_predict...')
start = time.time()
predict = clf.fit_predict(X)
delta = time.time() - start
print(f'end of predict... took {delta}')
ari = adjusted_rand_score(y, predict)
df_dict['npoints'].append(npoint)
df_dict['ndim'].append(ndim)
df_dict['time'].append(delta)
df_dict['ari'].append(ari)
df = pd.DataFrame(df_dict)
print(df)
df.to_csv(savepath_full, index=False)