-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathdetect.cpp
208 lines (180 loc) · 8.23 KB
/
detect.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#include <filesystem>
#include <fstream>
#include <iostream>
#include <memory>
#include <opencv2/opencv.hpp>
#include "deploy/utils/utils.hpp"
#include "deploy/vision/inference.hpp"
#include "deploy/vision/result.hpp"
namespace fs = std::filesystem;
// Get image files in a directory
std::vector<std::string> getImagesInDirectory(const std::string& folderPath) {
std::vector<std::string> imageFiles;
for (const auto& entry : fs::directory_iterator(folderPath)) {
const auto extension = entry.path().extension().string();
if (fs::is_regular_file(entry) && (extension == ".jpg" || extension == ".png" || extension == ".jpeg" || extension == ".bmp")) {
imageFiles.push_back(entry.path().string());
}
}
return imageFiles;
}
// Create output directory
void createOutputDirectory(const std::string& outputPath) {
if (!fs::exists(outputPath) && !fs::create_directories(outputPath)) {
throw std::runtime_error("Failed to create output directory: " + outputPath);
} else if (!fs::is_directory(outputPath)) {
throw std::runtime_error("Output path exists but is not a directory: " + outputPath);
}
}
// Generate label
std::vector<std::string> generateLabels(const std::string& labelFile) {
std::ifstream file(labelFile);
std::vector<std::string> labels;
if (!file.is_open()) {
throw std::runtime_error("Failed to open labels file: " + labelFile);
}
std::string label;
while (std::getline(file, label)) {
labels.emplace_back(label);
}
return labels;
}
// Visualize inference results
void visualize(cv::Mat& image, deploy::DetResult& result, std::vector<std::string>& labels) {
for (size_t i = 0; i < result.num; ++i) {
auto& box = result.boxes[i];
int cls = result.classes[i];
float score = result.scores[i];
auto& label = labels[cls];
std::string labelText = label + " " + cv::format("%.3f", score);
// Draw rectangle and label
int baseLine;
cv::Size labelSize = cv::getTextSize(labelText, cv::FONT_HERSHEY_SIMPLEX, 0.6, 1, &baseLine);
cv::rectangle(image, cv::Point(box.left, box.top), cv::Point(box.right, box.bottom), cv::Scalar(251, 81, 163), 2, cv::LINE_AA);
cv::rectangle(image, cv::Point(box.left, box.top - labelSize.height), cv::Point(box.left + labelSize.width, box.top), cv::Scalar(125, 40, 81), -1);
cv::putText(image, labelText, cv::Point(box.left, box.top), cv::FONT_HERSHEY_SIMPLEX, 0.6, cv::Scalar(253, 168, 208), 1);
}
}
// Create model
std::shared_ptr<deploy::BaseDet> createModel(const std::string& enginePath, bool useCudaGraph) {
if (useCudaGraph) {
return std::make_shared<deploy::DeployCGDet>(enginePath);
} else {
return std::make_shared<deploy::DeployDet>(enginePath);
}
}
// Parse arguments
void parseArguments(int argc, char** argv, std::string& enginePath, std::string& inputPath, std::string& outputPath, std::string& labelPath, bool& useCudaGraph) {
// Using a library for argument parsing (e.g., Boost.Program_options)
// For simplicity, manual parsing is shown here
if (argc < 5) {
std::cerr << "Usage: " << argv[0] << " -e <engine> -i <input> [-o <output>] [-l <labels>] [--cudaGraph]" << std::endl;
std::exit(EXIT_FAILURE);
}
for (int i = 1; i < argc; ++i) {
std::string arg = argv[i];
if (arg == "-e" || arg == "--engine") {
enginePath = argv[++i];
} else if (arg == "-i" || arg == "--input") {
inputPath = argv[++i];
} else if (arg == "-o" || arg == "--output") {
outputPath = argv[++i];
} else if (arg == "-l" || arg == "--labels") {
labelPath = argv[++i];
} else if (arg == "--cudaGraph") {
useCudaGraph = true;
} else {
std::cerr << "Unknown argument: " << arg << std::endl;
std::exit(EXIT_FAILURE);
}
}
}
int main(int argc, char** argv) {
try {
std::string enginePath, inputPath, outputPath, labelPath;
bool useCudaGraph = false;
parseArguments(argc, argv, enginePath, inputPath, outputPath, labelPath, useCudaGraph);
if (!fs::exists(enginePath)) {
throw std::runtime_error("Engine path does not exist: " + enginePath);
}
if (!fs::exists(inputPath) || (!fs::is_regular_file(inputPath) && !fs::is_directory(inputPath))) {
throw std::runtime_error("Input path does not exist or is not a regular file/directory: " + inputPath);
}
std::vector<std::string> labels;
if (!outputPath.empty()) {
if (labelPath.empty()) {
throw std::runtime_error("Please provide a labels file using -l or --labels.");
}
if (!fs::exists(labelPath)) {
throw std::runtime_error("Label path does not exist: " + labelPath);
}
labels = generateLabels(labelPath);
createOutputDirectory(outputPath);
}
auto model = createModel(enginePath, useCudaGraph);
if (fs::is_regular_file(inputPath)) {
cv::Mat cvimage = cv::imread(inputPath, cv::IMREAD_COLOR);
if (cvimage.empty()) {
throw std::runtime_error("Failed to read image from path: " + inputPath);
}
cv::cvtColor(cvimage, cvimage, cv::COLOR_BGR2RGB);
deploy::Image image(cvimage.data, cvimage.cols, cvimage.rows);
auto result = model->predict(image);
if (!outputPath.empty()) {
cv::cvtColor(cvimage, cvimage, cv::COLOR_RGB2BGR);
visualize(cvimage, result, labels);
cv::imwrite(outputPath + "/" + fs::path(inputPath).filename().string(), cvimage);
}
} else {
auto imageFiles = getImagesInDirectory(inputPath);
if (imageFiles.empty()) {
throw std::runtime_error("No image files found in the directory: " + inputPath);
}
int count = 0;
const size_t batchSize = model->batch;
deploy::GpuTimer gpuTimer;
deploy::CpuTimer cpuTimer;
for (size_t i = 0; i < imageFiles.size(); i += batchSize) {
std::vector<cv::Mat> images;
std::vector<deploy::Image> imgBatch;
std::vector<std::string> imgNameBatch;
for (size_t j = i; j < i + batchSize && j < imageFiles.size(); ++j) {
cv::Mat image = cv::imread(imageFiles[j], cv::IMREAD_COLOR);
if (image.empty()) {
throw std::runtime_error("Failed to read image from path: " + imageFiles[j]);
}
cv::cvtColor(image, image, cv::COLOR_BGR2RGB);
images.emplace_back(image);
imgBatch.emplace_back(image.data, image.cols, image.rows);
imgNameBatch.emplace_back(fs::path(imageFiles[j]).filename().string());
}
if (i != 5) {
cpuTimer.start();
gpuTimer.start();
}
auto results = model->predict(imgBatch);
if (i > 5) {
gpuTimer.stop();
cpuTimer.stop();
count++;
}
if (!outputPath.empty()) {
for (size_t j = 0; j < images.size(); ++j) {
cv::cvtColor(images[j], images[j], cv::COLOR_RGB2BGR);
visualize(images[j], results[j], labels);
cv::imwrite(outputPath + "/" + imgNameBatch[j], images[j]);
}
}
}
if (count > 0) {
std::cout << "Average infer CPU elapsed time: " << cpuTimer.milliseconds() / count << " ms" << std::endl;
std::cout << "Average infer GPU elapsed time: " << gpuTimer.milliseconds() / count << " ms" << std::endl;
}
}
std::cout << "Inference completed." << std::endl;
} catch (const std::exception& e) {
std::cerr << "Error: " << e.what() << std::endl;
return EXIT_FAILURE;
}
return 0;
}