-
Notifications
You must be signed in to change notification settings - Fork 0
/
question18.py
executable file
·164 lines (118 loc) · 4.04 KB
/
question18.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#!/usr/bin/env python3
import numpy as np
import operator as op
from functools import reduce
#question 18 triangle sum
#By starting at the top of the triangle below and
#moving to adjacent numbers on the row below, the
#maximum total from top to bottom is 23.
#3
#7 4
#2 4 6
#8 5 9 3
#That is, 3 + 7 + 4 + 9 = 23.
#Find the maximum total from top to bottom of the triangle below:
grid='''75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
'''
# idea. start from end and check at each step the max value
# then check sums of possible routes, keep max
# didn't work :-(
# convert string to matrix
lines = grid.splitlines()
# create matrix to hold data
grid_n = np.zeros(shape=(len(lines),len(lines)))
for i in range(len(lines)):
num_str = lines[i]
nums = np.asarray(num_str.split(' '))
grid_n[i,:len(nums)] = nums
#print(grid_n)
def walk_sum(grid,row,col):
if row==0: return grid[0,0]
if (row>0):
if(col>0):
temp1=grid[row-1,col]
temp2=grid[row-1,col-1]
if temp1>temp2:
return(grid[row,col]+walk_sum(grid,row-1,col))
return(grid[row,col]+walk_sum(grid,row-1,col-1))
return(grid[row,col]+walk_sum(grid,row-1,col))
count = 0
#print(grid_n.shape)
#for i in range(grid_n.shape[1]):
# temp = walk_sum(grid_n,grid_n.shape[0]-1,i)
# if temp > count: count = temp
#print(count)
# idea 2 - optimal substructure!
# start from top, and calculate max sum for each element
# at the bottom, take the max
def max_sum(grid):
grid_sum = np.zeros(shape=(grid.shape[0],grid.shape[1]))
for row in range(0,grid.shape[0]):
for col in range(0,row+1):
#print(row,col, grid[row,col])
grid_sum[row,col] = grid[row,col]
if row==0:
if col==0: grid_sum[0,0] = grid[0,0]
else: grid_sum[row,col] += grid_sum[row-1,col]
#print("row 0,", row,grid[row-1,col],grid_sum[row,col])
elif col==row:
grid_sum[row,col] += grid_sum[row-1,col-1]
#print("col=row,", row,grid[row-1,col-1],grid_sum[row,col])
else:
grid_sum[row,col] += max([grid_sum[row-1,col-1],grid_sum[row-1,col]])
return(grid_sum)
#temp = max_sum(grid_n)
#print(temp,temp[-1,:],max(temp[-1,:]))
# 1074 YAY
#question 17
# count the number of letters in the numbers 1 to 1000
# format
# one hundred and thirty one
digits_str = ['one','two','three','four','five','six','seven','eight','nine']
teens_str = ['ten','eleven','twelve','thirteen','fourteen','fifteen','sixteen','seventeen','eighteen','nineteen']
twenty_plus_str = ['twenty','thirty','fourty','fifty','sixty','seventy','eighty','ninety']
digits = [len(x) for x in digits_str]
teens = [len(x) for x in teens_str]
tens = [len(x) for x in twenty_plus_str]
hundred = 7
hundred_and = 10
# X hundred *(1+(3+ninty nine others))
one_thou = len('onethousand')
total_sum = 0
# digits and teens
total_sum+= sum(digits) + sum(teens)
# tens are in the form twenty, thrity, then
# twenty-one two...nine, thirty-one two... nine,
# = twenty appears 9 times more
# but the number one appears 8 times more for each twenty,
# so 8*9
total_sum += 9*(sum(tens) + 8*sum(digits))
sumto99 = total_sum
# hundreds are of the form
# one hundred, two, three... nine
# one hundred AND one... ninety nine... nine hundred AND one... ninety nine
# -> hundred appears nine times more digits one time
# -> sumto99 appears 9 times more + hundred_and *90 (less 9 bc not including 100,200,300)
total_sum += 9*(hundred + sum(digits))
total_sum += 9*sumto99 + 90*hundred_and
# one thousand once
total_sum += one_thou
print(total_sum)
#sum_to_99 = sum(digits) + sum(teens) + sum(tens) + sum(tens)*sum(digits)
#total_num_sum = sum_to_99+ sum(hundreds[0]*digits)+sum([x*sum_to_99 for x in hundreds])*sum(digits)
#print([x*sum_to_99 for x in hundreds if x>7])
#print(sum_to_99,total_num_sum)