-
Notifications
You must be signed in to change notification settings - Fork 0
/
cv_group_fits.R
32 lines (25 loc) · 1.89 KB
/
cv_group_fits.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
source("fitting_functions.R")
require(tibble)
cv_group_fits <- function() {
cv_group_fits = list()
cv_group_fits[["kachergis"]] = cross_validated_group_fits("kachergis", combined_data, c(.001,.1,.5), c(5,15,1))
cv_group_fits[["novelty"]] = cross_validated_group_fits("novelty", combined_data, c(.001,.1,.5), c(5,15,1))
cv_group_fits[["fazly"]] = cross_validated_group_fits("fazly", combined_data, c(1e-10,2), c(2,20000))
cv_group_fits[["Bayesian_decay"]] = cross_validated_group_fits("Bayesian_decay", combined_data, c(1e-5,1e-5,1e-5), c(10,10,10))
cv_group_fits[["strength"]] = cross_validated_group_fits("strength", combined_data, c(.001,.1), c(5,1))
cv_group_fits[["uncertainty"]] = cross_validated_group_fits("uncertainty", combined_data, c(.001,.1,.5), c(5,15,1))
cv_group_fits[["rescorla-wagner"]] = cross_validated_group_fits("rescorla-wagner", combined_data, c(1e-5,1e-5,1e-5), c(1,1,1))
cv_group_fits[["guess-and-test"]] = cross_validated_group_fits("guess-and-test", combined_data, c(.0001,.0001), c(1,1))
cv_group_fits[["trueswell2012"]] = cross_validated_group_fits("trueswell2012", combined_data, c(.0001,.0001), c(1,1))
# In if (!is.element(hypo, tr_o)) { ... :
# the condition has length > 1 and only the first element will be used
cv_group_fits[["pursuit_detailed"]] = cross_validated_group_fits("pursuit_detailed", combined_data, c(1e-5, 1e-5, 1e-5), c(1,1,1))
# Error in m[novel[w], min_ref] <- gamma :
# number of items to replace is not a multiple of replacement length
cv_group_fits[["kachergis_sampling"]] = cross_validated_group_fits("kachergis_sampling", combined_data, c(.001,.1,.5), c(5,15,1))
save(cv_group_fits, file="fits/cv_group_fits.Rdata")
}
#cv_group_fits()
load("fits/cv_group_fits.Rdata")
save(cv_group_fits, file="fits/cv_group_fits.Rdata")
#for(m in names(cv_group_fits) print(paste(cv_group_fits[[m]]$