-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path01_wordbank_analysis_sketch.qmd
173 lines (154 loc) · 6.4 KB
/
01_wordbank_analysis_sketch.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
---
title: "Initial Analysis of Wordbank Data"
author: "George, Alvin, Julien, ..."
format: html
editor: source
---
## Setup
```{r}
knitr::opts_chunk$set(message = FALSE)
```
```{r}
library(tidyverse)
library(wordbankr)
library(glue)
library(gamlss)
theme_set(theme_classic())
```
## Get data
Get all datasets explicitly labelled "bilingual"
```{r}
bilingual_datasets <- get_datasets() |>
filter(str_detect(dataset_origin_name, "Bilingual"))
```
Wrangle exposure data
```{r}
bilingual_data <- get_administration_data(include_demographic_info = TRUE,
include_language_exposure = TRUE) |>
filter(dataset_origin_name %in% bilingual_datasets$dataset_origin_name) |>
unnest(language_exposures, names_sep = "_") |>
filter(!is.na(language_exposures_language),
!is.na(language_exposures_exposure_proportion)) |>
rename(exposure_language = language_exposures_language,
exposure_proportion = language_exposures_exposure_proportion,
age_first_exposed = language_exposures_age_of_first_exposure) |>
select(-c(age_first_exposed, is_norming, date_of_test)) |>
filter(str_detect(language, glue("^{exposure_language}")))
# The Armon-Lotem data only have 4 values for exposure_proportion
bilingual_data_clean <- bilingual_data |>
filter(dataset_origin_name != "Armon-Lotem_Hebrew_English_Bilingual")
```
## Preprocess data
```{r}
all_instruments <- bilingual_data_clean |>
distinct(language, form)
```
Find number of items on each form
```{r}
items <- map2(all_instruments$language, all_instruments$form, get_item_data) |>
list_rbind() |>
group_by(language, form) |>
filter(item_kind == "word") |>
summarise(n = n(), .groups = "drop")
bilingual_data_prop <- bilingual_data_clean |>
left_join(items, by = join_by(language, form)) |>
mutate(prop_prod = production / n,
prop_prod = case_when(
prop_prod == 0 ~ .001,
prop_prod == 1 ~ .999,
.default = prop_prod
),
child_id = as_factor(child_id))
```
Filter down to just Eng (Am) data for now
```{r}
bilingual_data_prop_en <- bilingual_data_prop |>
filter(language == "English (American)")
```
## Run models
Fit GAMLSS model with monotonic spline for exposure
```{r}
gam_nonlinear <- gamlss(prop_prod ~ pbm(age, lambda = 10000) *
pbm(exposure_proportion, lambda = 10000) +
re(random = ~ 1 | child_id, level = 0),
sigma.formula = ~ pbm(age, lambda = 10000) *
pbm(exposure_proportion, lambda = 10000),
data = bilingual_data_prop_en |>
select(prop_prod, age, exposure_proportion, child_id),
family = BE,
control = gamlss.control(n.cyc = 100))
```
Plot model predictions
```{r}
pred_params <- expand_grid(age = 17:36,
exposure_proportion = seq(0, 100, length.out = 20),
child_id = factor(0))
preds <- predict(gam_nonlinear,
newdata = pred_params,
type = "response")
gam_nonlinear_preds <- pred_params |> cbind(preds)
ggplot(gam_nonlinear_preds,
aes(x = age, y = preds,
col = exposure_proportion,
group = exposure_proportion)) +
geom_line() +
labs(x = "Age", y = "Proportion produced", col = "Exposure proportion")
```
```{r}
ggplot(gam_nonlinear_preds,
aes(x = exposure_proportion, y = preds,
col = age,
group = age)) +
geom_line() +
labs(x = "Exposure proportion", y = "Proportion produced", col = "Age")
```
Compare with linear exposure term
```{r}
gam_linear <- gamlss(prop_prod ~ pbm(age, lambda = 10000) *
exposure_proportion +
re(random = ~ 1 | child_id, level = 0),
sigma.formula = ~ pbm(age, lambda = 10000) *
exposure_proportion,
data = bilingual_data_prop_en |>
select(prop_prod, age, exposure_proportion, child_id),
family = BE,
control = gamlss.control(n.cyc = 100))
# LRfunc credit: https://sakai.unc.edu/access/content/group/3d1eb92e-7848-4f55-90c3-7c72a54e7e43/public/docs/lectures/lecture18.htm
LRfunc <- function(x, y) {
LR <- 2 * (logLik(y) - logLik(x))
df <- attr(logLik(y), "df") - attr(logLik(x), "df")
p <- 1 - pchisq(LR, df)[1]
out <- data.frame(LR = LR, df = df, p = p)
print(out, row.names = F)
}
LRfunc(gam_linear, gam_nonlinear)
```
The model with a nonlinear exposure term is significantly better than the model with a linear exposure term (using a likelihood ratio test). (This result also holds if you use AIC for model selection, but there is no significant difference using BIC.)
Now fitting on data from all current languages
```{r}
gam_nonlinear_all <- gamlss(prop_prod ~ pbm(age, lambda = 10000) *
pbm(exposure_proportion, lambda = 10000) +
re(random = ~ 1 | child_id, level = 0) +
re(random = ~ 1 | language, level = 0),
sigma.formula = ~ pbm(age, lambda = 10000) *
pbm(exposure_proportion, lambda = 10000),
data = bilingual_data_prop |>
select(prop_prod, age, exposure_proportion,
child_id, language),
family = BE,
control = gamlss.control(n.cyc = 100))
gam_linear_all <- gamlss(prop_prod ~ pbm(age, lambda = 10000) *
exposure_proportion +
re(random = ~ 1 | child_id, level = 0) +
re(random = ~ 1 | language, level = 0),
sigma.formula = ~ pbm(age, lambda = 10000) *
exposure_proportion,
data = bilingual_data_prop |>
select(prop_prod, age, exposure_proportion,
child_id, language),
family = BE,
control = gamlss.control(n.cyc = 100))
LRfunc(gam_linear_all, gam_nonlinear_all)
lmtest::lrtest(gam_linear_all, gam_nonlinear_all)
```
Not sure why the df difference is negative here (which results in a NaN p-value). Nonetheless AIC and BIC both prefer the nonlinear model.