-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathcrf.py
399 lines (333 loc) · 14.1 KB
/
crf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Laon-CRF
: Easy-to-use Linear Chain Conditional Random Fields
Author: Seong-Jin Kim
License: MIT License
Version: 0.0
Email: [email protected]
Created: May 13, 2015
Copyright (c) 2015 Seong-Jin Kim
"""
from read_corpus import read_conll_corpus
from feature import FeatureSet, STARTING_LABEL_INDEX
from math import exp, log
import numpy as np
from scipy.optimize import fmin_l_bfgs_b
import time
import json
import datetime
from collections import Counter
SCALING_THRESHOLD = 1e250
ITERATION_NUM = 0
SUB_ITERATION_NUM = 0
TOTAL_SUB_ITERATIONS = 0
GRADIENT = None
def _callback(params):
global ITERATION_NUM
global SUB_ITERATION_NUM
global TOTAL_SUB_ITERATIONS
ITERATION_NUM += 1
TOTAL_SUB_ITERATIONS += SUB_ITERATION_NUM
SUB_ITERATION_NUM = 0
def _generate_potential_table(params, num_labels, feature_set, X, inference=True):
"""
Generates a potential table using given observations.
* potential_table[t][prev_y, y]
:= exp(inner_product(params, feature_vector(prev_y, y, X, t)))
(where 0 <= t < len(X))
"""
tables = list()
for t in range(len(X)):
table = np.zeros((num_labels, num_labels))
if inference:
for (prev_y, y), score in feature_set.calc_inner_products(params, X, t):
if prev_y == -1:
table[:, y] += score
else:
table[prev_y, y] += score
else:
for (prev_y, y), feature_ids in X[t]:
score = sum(params[fid] for fid in feature_ids)
if prev_y == -1:
table[:, y] += score
else:
table[prev_y, y] += score
table = np.exp(table)
if t == 0:
table[STARTING_LABEL_INDEX+1:] = 0
else:
table[:,STARTING_LABEL_INDEX] = 0
table[STARTING_LABEL_INDEX,:] = 0
tables.append(table)
return tables
def _forward_backward(num_labels, time_length, potential_table):
"""
Calculates alpha(forward terms), beta(backward terms), and Z(instance-specific normalization factor)
with a scaling method(suggested by Rabiner, 1989).
* Reference:
- 1989, Lawrence R. Rabiner, A Tutorial on Hidden Markov Models and Selected Applications
in Speech Recognition
"""
alpha = np.zeros((time_length, num_labels))
scaling_dic = dict()
t = 0
for label_id in range(num_labels):
alpha[t, label_id] = potential_table[t][STARTING_LABEL_INDEX, label_id]
#alpha[0, :] = potential_table[0][STARTING_LABEL_INDEX, :] # slow
t = 1
while t < time_length:
scaling_time = None
scaling_coefficient = None
overflow_occured = False
label_id = 1
while label_id < num_labels:
alpha[t, label_id] = np.dot(alpha[t-1,:], potential_table[t][:,label_id])
if alpha[t, label_id] > SCALING_THRESHOLD:
if overflow_occured:
print('******** Consecutive overflow ********')
raise BaseException()
overflow_occured = True
scaling_time = t - 1
scaling_coefficient = SCALING_THRESHOLD
scaling_dic[scaling_time] = scaling_coefficient
break
else:
label_id += 1
if overflow_occured:
alpha[t-1] /= scaling_coefficient
alpha[t] = 0
else:
t += 1
beta = np.zeros((time_length, num_labels))
t = time_length - 1
for label_id in range(num_labels):
beta[t, label_id] = 1.0
#beta[time_length - 1, :] = 1.0 # slow
for t in range(time_length-2, -1, -1):
for label_id in range(1, num_labels):
beta[t, label_id] = np.dot(beta[t+1,:], potential_table[t+1][label_id,:])
if t in scaling_dic.keys():
beta[t] /= scaling_dic[t]
Z = sum(alpha[time_length-1])
return alpha, beta, Z, scaling_dic
def _calc_path_score(potential_table, scaling_dic, Y, label_dic):
score = 1.0
prev_y = STARTING_LABEL_INDEX
for t in range(len(Y)):
y = label_dic[Y[t]]
score *= potential_table[prev_y, y, t]
if t in scaling_dic.keys():
score = score / scaling_dic[t]
prev_y = y
return score
def _log_likelihood(params, *args):
"""
Calculate likelihood and gradient
"""
training_data, feature_set, training_feature_data, empirical_counts, label_dic, squared_sigma = args
expected_counts = np.zeros(len(feature_set))
total_logZ = 0
for X_features in training_feature_data:
potential_table = _generate_potential_table(params, len(label_dic), feature_set,
X_features, inference=False)
alpha, beta, Z, scaling_dic = _forward_backward(len(label_dic), len(X_features), potential_table)
total_logZ += log(Z) + \
sum(log(scaling_coefficient) for _, scaling_coefficient in scaling_dic.items())
for t in range(len(X_features)):
potential = potential_table[t]
for (prev_y, y), feature_ids in X_features[t]:
# Adds p(prev_y, y | X, t)
if prev_y == -1:
if t in scaling_dic.keys():
prob = (alpha[t, y] * beta[t, y] * scaling_dic[t])/Z
else:
prob = (alpha[t, y] * beta[t, y])/Z
elif t == 0:
if prev_y is not STARTING_LABEL_INDEX:
continue
else:
prob = (potential[STARTING_LABEL_INDEX, y] * beta[t, y])/Z
else:
if prev_y is STARTING_LABEL_INDEX or y is STARTING_LABEL_INDEX:
continue
else:
prob = (alpha[t-1, prev_y] * potential[prev_y, y] * beta[t, y]) / Z
for fid in feature_ids:
expected_counts[fid] += prob
likelihood = np.dot(empirical_counts, params) - total_logZ - \
np.sum(np.dot(params,params))/(squared_sigma*2)
gradients = empirical_counts - expected_counts - params/squared_sigma
global GRADIENT
GRADIENT = gradients
global SUB_ITERATION_NUM
sub_iteration_str = ' '
if SUB_ITERATION_NUM > 0:
sub_iteration_str = '(' + '{0:02d}'.format(SUB_ITERATION_NUM) + ')'
print(' ', '{0:03d}'.format(ITERATION_NUM), sub_iteration_str, ':', likelihood * -1)
SUB_ITERATION_NUM += 1
return likelihood * -1
def _gradient(params, *args):
return GRADIENT * -1
class LinearChainCRF():
"""
Linear-chain Conditional Random Field
"""
training_data = None
feature_set = None
label_dic = None
label_array = None
num_labels = None
params = None
# For L-BFGS
squared_sigma = 10.0
def __init__(self):
pass
def _read_corpus(self, filename):
return read_conll_corpus(filename)
def _get_training_feature_data(self):
return [[self.feature_set.get_feature_list(X, t) for t in range(len(X))]
for X, _ in self.training_data]
def _estimate_parameters(self):
"""
Estimates parameters using L-BFGS.
* References:
- R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound Constrained Optimization,
(1995), SIAM Journal on Scientific and Statistical Computing, 16, 5, pp. 1190-1208.
- C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large
scale bound constrained optimization (1997), ACM Transactions on Mathematical Software, 23, 4,
pp. 550 - 560.
- J.L. Morales and J. Nocedal. L-BFGS-B: Remark on Algorithm 778: L-BFGS-B, FORTRAN routines for
large scale bound constrained optimization (2011), ACM Transactions on Mathematical Software, 38, 1.
"""
training_feature_data = self._get_training_feature_data()
print('* Squared sigma:', self.squared_sigma)
print('* Start L-BGFS')
print(' ========================')
print(' iter(sit): likelihood')
print(' ------------------------')
self.params, log_likelihood, information = \
fmin_l_bfgs_b(func=_log_likelihood, fprime=_gradient,
x0=np.zeros(len(self.feature_set)),
args=(self.training_data, self.feature_set, training_feature_data,
self.feature_set.get_empirical_counts(),
self.label_dic, self.squared_sigma),
callback=_callback)
print(' ========================')
print(' (iter: iteration, sit: sub iteration)')
print('* Training has been finished with %d iterations' % information['nit'])
if information['warnflag'] != 0:
print('* Warning (code: %d)' % information['warnflag'])
if 'task' in information.keys():
print('* Reason: %s' % (information['task']))
print('* Likelihood: %s' % str(log_likelihood))
def train(self, corpus_filename, model_filename):
"""
Estimates parameters using conjugate gradient methods.(L-BFGS-B used)
"""
start_time = time.time()
print('[%s] Start training' % datetime.datetime.now())
# Read the training corpus
print("* Reading training data ... ", end="")
self.training_data = self._read_corpus(corpus_filename)
print("Done")
# Generate feature set from the corpus
self.feature_set = FeatureSet()
self.feature_set.scan(self.training_data)
self.label_dic, self.label_array = self.feature_set.get_labels()
self.num_labels = len(self.label_array)
print("* Number of labels: %d" % (self.num_labels-1))
print("* Number of features: %d" % len(self.feature_set))
# Estimates parameters to maximize log-likelihood of the corpus.
self._estimate_parameters()
self.save_model(model_filename)
elapsed_time = time.time() - start_time
print('* Elapsed time: %f' % elapsed_time)
print('* [%s] Training done' % datetime.datetime.now())
def test(self, test_corpus_filename):
if self.params is None:
raise BaseException("You should load a model first!")
test_data = self._read_corpus(test_corpus_filename)
total_count = 0
correct_count = 0
for X, Y in test_data:
Yprime = self.inference(X)
for t in range(len(Y)):
total_count += 1
if Y[t] == Yprime[t]:
correct_count += 1
print('Correct: %d' % correct_count)
print('Total: %d' % total_count)
print('Performance: %f' % (correct_count/total_count))
def print_test_result(self, test_corpus_filename):
test_data = self._read_corpus(test_corpus_filename)
for X, Y in test_data:
Yprime = self.inference(X)
for t in range(len(X)):
print('%s\t%s\t%s' % ('\t'.join(X[t]), Y[t], Yprime[t]))
print()
def inference(self, X):
"""
Finds the best label sequence.
"""
potential_table = _generate_potential_table(self.params, self.num_labels,
self.feature_set, X, inference=True)
Yprime = self.viterbi(X, potential_table)
return Yprime
def viterbi(self, X, potential_table):
"""
The Viterbi algorithm with backpointers
"""
time_length = len(X)
max_table = np.zeros((time_length, self.num_labels))
argmax_table = np.zeros((time_length, self.num_labels), dtype='int64')
t = 0
for label_id in range(self.num_labels):
max_table[t, label_id] = potential_table[t][STARTING_LABEL_INDEX, label_id]
for t in range(1, time_length):
for label_id in range(1, self.num_labels):
max_value = -float('inf')
max_label_id = None
for prev_label_id in range(1, self.num_labels):
value = max_table[t-1, prev_label_id] * potential_table[t][prev_label_id, label_id]
if value > max_value:
max_value = value
max_label_id = prev_label_id
max_table[t, label_id] = max_value
argmax_table[t, label_id] = max_label_id
sequence = list()
next_label = max_table[time_length-1].argmax()
sequence.append(next_label)
for t in range(time_length-1, -1, -1):
next_label = argmax_table[t, next_label]
sequence.append(next_label)
return [self.label_dic[label_id] for label_id in sequence[::-1][1:]]
def save_model(self, model_filename):
model = {"feature_dic": self.feature_set.serialize_feature_dic(),
"num_features": self.feature_set.num_features,
"labels": self.feature_set.label_array,
"params": list(self.params)}
f = open(model_filename, 'w')
json.dump(model, f, ensure_ascii=False, indent=2, separators=(',', ':'))
f.close()
import os
print('* Trained CRF Model has been saved at "%s/%s"' % (os.getcwd(), model_filename))
def load(self, model_filename):
f = open(model_filename)
model = json.load(f)
f.close()
self.feature_set = FeatureSet()
self.feature_set.load(model['feature_dic'], model['num_features'], model['labels'])
self.label_dic, self.label_array = self.feature_set.get_labels()
self.num_labels = len(self.label_array)
self.params = np.asarray(model['params'])
print('CRF model loaded')
# For testing
#crf = LinearChainCRF()
#crf.train('data/chunking/simple_train.data', 'data/chunking/model_5.json')
#crf.load('data/chunking/model_5.json')
#crf.test('data/chunking/simple_test.data')
#crf.train('data/chunking_2/train.txt', 'data/chunking_2/model_4.json')
#crf.load('data/chunking_2/model_4.json')
#crf.test('data/chunking_2/test.txt')