-
Notifications
You must be signed in to change notification settings - Fork 0
/
pointnet_partseg.py
161 lines (132 loc) · 5.09 KB
/
pointnet_partseg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
class PointNetPartSeg(nn.Module):
def __init__(self, output_classes, input_dims=3, num_points=2048,
use_transform=True):
super(PointNetPartSeg, self).__init__()
self.input_dims = input_dims
self.conv1 = nn.ModuleList()
self.conv1.append(nn.Conv1d(input_dims, 64, 1))
self.conv1.append(nn.Conv1d(64, 128, 1))
self.conv1.append(nn.Conv1d(128, 128, 1))
self.bn1 = nn.ModuleList()
self.bn1.append(nn.BatchNorm1d(64))
self.bn1.append(nn.BatchNorm1d(128))
self.bn1.append(nn.BatchNorm1d(128))
self.conv2 = nn.ModuleList()
self.conv2.append(nn.Conv1d(128, 512, 1))
self.bn2 = nn.ModuleList()
self.bn2.append(nn.BatchNorm1d(512))
self.conv_max = nn.Conv1d(512, 2048, 1)
self.bn_max = nn.BatchNorm1d(2048)
self.maxpool = nn.MaxPool1d(num_points)
self.pool_feat_len = 2048
self.conv3 = nn.ModuleList()
self.conv3.append(nn.Conv1d(2048 + 64 + 128*3 + 512 + 16, 256, 1))
self.conv3.append(nn.Conv1d(256, 256, 1))
self.conv3.append(nn.Conv1d(256, 128, 1))
self.bn3 = nn.ModuleList()
self.bn3.append(nn.BatchNorm1d(256))
self.bn3.append(nn.BatchNorm1d(256))
self.bn3.append(nn.BatchNorm1d(128))
self.conv_out = nn.Conv1d(128, output_classes, 1)
self.use_transform = use_transform
if use_transform:
self.transform1 = TransformNet(self.input_dims)
self.trans_bn1 = nn.BatchNorm1d(self.input_dims)
self.transform2 = TransformNet(128)
self.trans_bn2 = nn.BatchNorm1d(128)
def forward(self, x, cat_vec=None):
batch_size = x.shape[0]
h = x.permute(0, 2, 1)
num_points = h.shape[2]
if self.use_transform:
trans = self.transform1(h)
h = h.transpose(2, 1)
h = torch.bmm(h, trans)
h = h.transpose(2, 1)
h = F.relu(self.trans_bn1(h))
mid_feat = []
for conv, bn in zip(self.conv1, self.bn1):
h = conv(h)
h = bn(h)
h = F.relu(h)
mid_feat.append(h)
if self.use_transform:
trans = self.transform2(h)
h = h.transpose(2, 1)
h = torch.bmm(h, trans)
h = h.transpose(2, 1)
h = F.relu(self.trans_bn2(h))
mid_feat.append(h)
for conv, bn in zip(self.conv2, self.bn2):
h = conv(h)
h = bn(h)
h = F.relu(h)
mid_feat.append(h)
h = self.conv_max(h)
h = self.bn_max(h)
h = self.maxpool(h).view(batch_size, -1, 1).repeat(1, 1, num_points)
mid_feat.append(h)
if cat_vec is not None:
mid_feat.append(cat_vec)
h = torch.cat(mid_feat, 1)
for conv, bn in zip(self.conv3, self.bn3):
h = conv(h)
h = bn(h)
h = F.relu(h)
out = self.conv_out(h)
return out
class TransformNet(nn.Module):
def __init__(self, input_dims=3, num_points=2048):
super(TransformNet, self).__init__()
self.conv = nn.ModuleList()
self.conv.append(nn.Conv1d(input_dims, 64, 1))
self.conv.append(nn.Conv1d(64, 128, 1))
self.conv.append(nn.Conv1d(128, 1024, 1))
self.bn = nn.ModuleList()
self.bn.append(nn.BatchNorm1d(64))
self.bn.append(nn.BatchNorm1d(128))
self.bn.append(nn.BatchNorm1d(1024))
self.maxpool = nn.MaxPool1d(num_points)
self.pool_feat_len = 1024
self.mlp2 = nn.ModuleList()
self.mlp2.append(nn.Linear(1024, 512))
self.mlp2.append(nn.Linear(512, 256))
self.bn2 = nn.ModuleList()
self.bn2.append(nn.BatchNorm1d(512))
self.bn2.append(nn.BatchNorm1d(256))
self.input_dims = input_dims
self.mlp_out = nn.Linear(256, input_dims * input_dims)
def forward(self, h):
batch_size = h.shape[0]
for conv, bn in zip(self.conv, self.bn):
h = conv(h)
h = bn(h)
h = F.relu(h)
h = self.maxpool(h).view(-1, self.pool_feat_len)
for mlp, bn in zip(self.mlp2, self.bn2):
h = mlp(h)
h = bn(h)
h = F.relu(h)
out = self.mlp_out(h)
iden = Variable(torch.from_numpy(np.eye(self.input_dims).flatten().astype(np.float32)))
iden = iden.view(1, self.input_dims * self.input_dims).repeat(batch_size, 1)
if out.is_cuda:
iden = iden.cuda()
out = out + iden
out = out.view(-1, self.input_dims, self.input_dims)
return out
class PartSegLoss(nn.Module):
def __init__(self, eps=0.2):
super(PartSegLoss, self).__init__()
self.eps = eps
self.loss = nn.CrossEntropyLoss()
def forward(self, logits, y):
num_classes = logits.shape[1]
logits = logits.permute(0, 2, 1).contiguous().view(-1, num_classes)
loss = self.loss(logits, y)
return loss