Skip to content

Latest commit

 

History

History
56 lines (37 loc) · 1.59 KB

README.md

File metadata and controls

56 lines (37 loc) · 1.59 KB

DGL for ogbn-proteins

GAT

DGL implementation of GAT for ogbn-proteins. Using some of the techniques from Bag of Tricks for Node Classification with Graph Neural Networks (https://arxiv.org/abs/2103.13355).

Requires DGL 0.5 or later versions.

Usage

For the best score, run gat.py and you should directly see the result.

python3 gat.py

For the score of GAT+labels, run gat.py with --use-labels enabled and you should directly see the result.

python3 gat.py --use-labels

Results

Here are the results over 10 runs.

Method Validation ROC-AUC Test ROC-AUC #Parameters
GAT 0.9276 ± 0.0007 0.8747 ± 0.0016 2,475,232
GAT+labels 0.9280 ± 0.0008 0.8765 ± 0.0008 2,484,192

MWE-GCN and MWE-DGCN

Models

MWE-GCN and MWE-DGCN are GCN models designed for graphs whose edges contain multi-dimensional edge weights that indicate the strengths of the relations represented by the edges.

Dependencies

  • DGL 0.5.2
  • PyTorch 1.4.0
  • OGB 1.2.0
  • Tensorboard 2.1.1

Usage

To use MWE-GCN:

python main_proteins_full_dgl.py --model MWE-GCN

To use MWE-DGCN:

python main_proteins_full_dgl.py --model MWE-DGCN

Additional optional arguments include 'rand_seed' (the random seed), 'cuda' (the cuda device number, if available), 'postfix' (a string appended to the saved-model file)