-
Notifications
You must be signed in to change notification settings - Fork 0
/
synthetic_structsim.py
347 lines (315 loc) · 12.4 KB
/
synthetic_structsim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
# This file is copied from the author's implementation.
# <https://github.com/RexYing/gnn-model-explainer/blob/master/utils/synthetic_structsim.py>.
"""synthetic_structsim.py
Utilities for generating certain graph shapes.
"""
import math
import networkx as nx
import numpy as np
# Following GraphWave's representation of structural similarity
def clique(start, nb_nodes, nb_to_remove=0, role_start=0):
""" Defines a clique (complete graph on nb_nodes nodes,
with nb_to_remove edges that will have to be removed),
index of nodes starting at start
and role_ids at role_start
INPUT:
-------------
start : starting index for the shape
nb_nodes : int correspondingraph to the nb of nodes in the clique
role_start : starting index for the roles
nb_to_remove: int-- numb of edges to remove (unif at RDM)
OUTPUT:
-------------
graph : a house shape graph, with ids beginning at start
roles : list of the roles of the nodes (indexed starting at
role_start)
"""
a = np.ones((nb_nodes, nb_nodes))
np.fill_diagonal(a, 0)
graph = nx.from_numpy_matrix(a)
edge_list = graph.edges().keys()
roles = [role_start] * nb_nodes
if nb_to_remove > 0:
lst = np.random.choice(len(edge_list), nb_to_remove, replace=False)
print(edge_list, lst)
to_delete = [edge_list[e] for e in lst]
graph.remove_edges_from(to_delete)
for e in lst:
print(edge_list[e][0])
print(len(roles))
roles[edge_list[e][0]] += 1
roles[edge_list[e][1]] += 1
mapping_graph = {k: (k + start) for k in range(nb_nodes)}
graph = nx.relabel_nodes(graph, mapping_graph)
return graph, roles
def cycle(start, len_cycle, role_start=0):
"""Builds a cycle graph, with index of nodes starting at start
and role_ids at role_start
INPUT:
-------------
start : starting index for the shape
role_start : starting index for the roles
OUTPUT:
-------------
graph : a house shape graph, with ids beginning at start
roles : list of the roles of the nodes (indexed starting at
role_start)
"""
graph = nx.Graph()
graph.add_nodes_from(range(start, start + len_cycle))
for i in range(len_cycle - 1):
graph.add_edges_from([(start + i, start + i + 1)])
graph.add_edges_from([(start + len_cycle - 1, start)])
roles = [role_start] * len_cycle
return graph, roles
def diamond(start, role_start=0):
"""Builds a diamond graph, with index of nodes starting at start
and role_ids at role_start
INPUT:
-------------
start : starting index for the shape
role_start : starting index for the roles
OUTPUT:
-------------
graph : a house shape graph, with ids beginning at start
roles : list of the roles of the nodes (indexed starting at
role_start)
"""
graph = nx.Graph()
graph.add_nodes_from(range(start, start + 6))
graph.add_edges_from(
[
(start, start + 1),
(start + 1, start + 2),
(start + 2, start + 3),
(start + 3, start),
]
)
graph.add_edges_from(
[
(start + 4, start),
(start + 4, start + 1),
(start + 4, start + 2),
(start + 4, start + 3),
]
)
graph.add_edges_from(
[
(start + 5, start),
(start + 5, start + 1),
(start + 5, start + 2),
(start + 5, start + 3),
]
)
roles = [role_start] * 6
return graph, roles
def tree(start, height, r=2, role_start=0):
"""Builds a balanced r-tree of height h
INPUT:
-------------
start : starting index for the shape
height : int height of the tree
r : int number of branches per node
role_start : starting index for the roles
OUTPUT:
-------------
graph : a tree shape graph, with ids beginning at start
roles : list of the roles of the nodes (indexed starting at role_start)
"""
graph = nx.balanced_tree(r, height)
roles = [0] * graph.number_of_nodes()
return graph, roles
def fan(start, nb_branches, role_start=0):
"""Builds a fan-like graph, with index of nodes starting at start
and role_ids at role_start
INPUT:
-------------
nb_branches : int correspondingraph to the nb of fan branches
start : starting index for the shape
role_start : starting index for the roles
OUTPUT:
-------------
graph : a house shape graph, with ids beginning at start
roles : list of the roles of the nodes (indexed starting at
role_start)
"""
graph, roles = star(start, nb_branches, role_start=role_start)
for k in range(1, nb_branches - 1):
roles[k] += 1
roles[k + 1] += 1
graph.add_edges_from([(start + k, start + k + 1)])
return graph, roles
def ba(start, width, role_start=0, m=5):
"""Builds a BA preferential attachment graph, with index of nodes starting at start
and role_ids at role_start
INPUT:
-------------
start : starting index for the shape
width : int size of the graph
role_start : starting index for the roles
OUTPUT:
-------------
graph : a house shape graph, with ids beginning at start
roles : list of the roles of the nodes (indexed starting at
role_start)
"""
graph = nx.barabasi_albert_graph(width, m)
graph.add_nodes_from(range(start, start + width))
nids = sorted(graph)
mapping = {nid: start + i for i, nid in enumerate(nids)}
graph = nx.relabel_nodes(graph, mapping)
roles = [role_start for i in range(width)]
return graph, roles
def house(start, role_start=0):
"""Builds a house-like graph, with index of nodes starting at start
and role_ids at role_start
INPUT:
-------------
start : starting index for the shape
role_start : starting index for the roles
OUTPUT:
-------------
graph : a house shape graph, with ids beginning at start
roles : list of the roles of the nodes (indexed starting at
role_start)
"""
graph = nx.Graph()
graph.add_nodes_from(range(start, start + 5))
graph.add_edges_from(
[
(start, start + 1),
(start + 1, start + 2),
(start + 2, start + 3),
(start + 3, start),
]
)
# graph.add_edges_from([(start, start + 2), (start + 1, start + 3)])
graph.add_edges_from([(start + 4, start), (start + 4, start + 1)])
roles = [role_start, role_start, role_start + 1, role_start + 1, role_start + 2]
return graph, roles
def grid(start, dim=2, role_start=0):
""" Builds a 2by2 grid
"""
grid_G = nx.grid_graph([dim, dim])
grid_G = nx.convert_node_labels_to_integers(grid_G, first_label=start)
roles = [role_start for i in grid_G.nodes()]
return grid_G, roles
def star(start, nb_branches, role_start=0):
"""Builds a star graph, with index of nodes starting at start
and role_ids at role_start
INPUT:
-------------
nb_branches : int correspondingraph to the nb of star branches
start : starting index for the shape
role_start : starting index for the roles
OUTPUT:
-------------
graph : a house shape graph, with ids beginning at start
roles : list of the roles of the nodes (indexed starting at
role_start)
"""
graph = nx.Graph()
graph.add_nodes_from(range(start, start + nb_branches + 1))
for k in range(1, nb_branches + 1):
graph.add_edges_from([(start, start + k)])
roles = [role_start + 1] * (nb_branches + 1)
roles[0] = role_start
return graph, roles
def path(start, width, role_start=0):
"""Builds a path graph, with index of nodes starting at start
and role_ids at role_start
INPUT:
-------------
start : starting index for the shape
width : int length of the path
role_start : starting index for the roles
OUTPUT:
-------------
graph : a house shape graph, with ids beginning at start
roles : list of the roles of the nodes (indexed starting at
role_start)
"""
graph = nx.Graph()
graph.add_nodes_from(range(start, start + width))
for i in range(width - 1):
graph.add_edges_from([(start + i, start + i + 1)])
roles = [role_start] * width
roles[0] = role_start + 1
roles[-1] = role_start + 1
return graph, roles
def build_graph(
width_basis,
basis_type,
list_shapes,
start=0,
rdm_basis_plugins=False,
add_random_edges=0,
m=5,
):
"""This function creates a basis (scale-free, path, or cycle)
and attaches elements of the type in the list randomly along the basis.
Possibility to add random edges afterwards.
INPUT:
--------------------------------------------------------------------------------------
width_basis : width (in terms of number of nodes) of the basis
basis_type : (torus, string, or cycle)
shapes : list of shape list (1st arg: type of shape,
next args:args for building the shape,
except for the start)
start : initial nb for the first node
rdm_basis_plugins: boolean. Should the shapes be randomly placed
along the basis (True) or regularly (False)?
add_random_edges : nb of edges to randomly add on the structure
m : number of edges to attach to existing node (for BA graph)
OUTPUT:
--------------------------------------------------------------------------------------
basis : a nx graph with the particular shape
role_ids : labels for each role
plugins : node ids with the attached shapes
"""
if basis_type == "ba":
basis, role_id = eval(basis_type)(start, width_basis, m=m)
else:
basis, role_id = eval(basis_type)(start, width_basis)
n_basis, n_shapes = nx.number_of_nodes(basis), len(list_shapes)
start += n_basis # indicator of the id of the next node
# Sample (with replacement) where to attach the new motifs
if rdm_basis_plugins is True:
plugins = np.random.choice(n_basis, n_shapes, replace=False)
else:
spacing = math.floor(n_basis / n_shapes)
plugins = [int(k * spacing) for k in range(n_shapes)]
seen_shapes = {"basis": [0, n_basis]}
for shape_id, shape in enumerate(list_shapes):
shape_type = shape[0]
args = [start]
if len(shape) > 1:
args += shape[1:]
args += [0]
graph_s, roles_graph_s = eval(shape_type)(*args)
n_s = nx.number_of_nodes(graph_s)
try:
col_start = seen_shapes[shape_type][0]
except:
col_start = np.max(role_id) + 1
seen_shapes[shape_type] = [col_start, n_s]
# Attach the shape to the basis
basis.add_nodes_from(graph_s.nodes())
basis.add_edges_from(graph_s.edges())
basis.add_edges_from([(start, plugins[shape_id])])
if shape_type == "cycle":
if np.random.random() > 0.5:
a = np.random.randint(1, 4)
b = np.random.randint(1, 4)
basis.add_edges_from([(a + start, b + plugins[shape_id])])
temp_labels = [r + col_start for r in roles_graph_s]
# temp_labels[0] += 100 * seen_shapes[shape_type][0]
role_id += temp_labels
start += n_s
if add_random_edges > 0:
# add random edges between nodes:
for p in range(add_random_edges):
src, dest = np.random.choice(nx.number_of_nodes(basis), 2, replace=False)
print(src, dest)
basis.add_edges_from([(src, dest)])
return basis, role_id, plugins