- Paper link: https://arxiv.org/abs/1710.10903
- Author's code repo (in Tensorflow): https://github.com/PetarV-/GAT.
- Popular pytorch implementation: https://github.com/Diego999/pyGAT.
- torch v1.0: the autograd support for sparse mm is only available in v1.0.
- requests
- sklearn
pip install torch==1.0.0 requests
Run with following:
python3 train.py --dataset=cora --gpu=0
python3 train.py --dataset=citeseer --gpu=0 --early-stop
python3 train.py --dataset=pubmed --gpu=0 --num-out-heads=8 --weight-decay=0.001 --early-stop
python3 train_ppi.py --gpu=0
Dataset | Test Accuracy | Time(s) | Baseline#1 times(s) | Baseline#2 times(s) |
---|---|---|---|---|
Cora | 84.02(0.40) | 0.0113 | 0.0982 (8.7x) | 0.0424 (3.8x) |
Citeseer | 70.91(0.79) | 0.0111 | n/a | n/a |
Pubmed | 78.57(0.75) | 0.0115 | n/a | n/a |
PPI | 0.9836 | n/a | n/a | n/a |
- All the accuracy numbers are obtained after 300 epochs.
- The time measures how long it takes to train one epoch.
- All time is measured on EC2 p3.2xlarge instance w/ V100 GPU.
- Baseline#1: https://github.com/PetarV-/GAT.
- Baseline#2: https://github.com/Diego999/pyGAT.