-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
134 lines (101 loc) · 4.49 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
"""
Learning Deep Generative Models of Graphs
Paper: https://arxiv.org/pdf/1803.03324.pdf
This implementation works with a minibatch of size 1 only for both training and inference.
"""
import argparse
import datetime
import time
import torch
from torch.optim import Adam
from torch.utils.data import DataLoader
from torch.nn.utils import clip_grad_norm_
from model import DGMG
def main(opts):
t1 = time.time()
# Setup dataset and data loader
if opts['dataset'] == 'cycles':
from cycles import CycleDataset, CycleModelEvaluation, CyclePrinting
dataset = CycleDataset(fname=opts['path_to_dataset'])
evaluator = CycleModelEvaluation(v_min=opts['min_size'],
v_max=opts['max_size'],
dir=opts['log_dir'])
printer = CyclePrinting(num_epochs=opts['nepochs'],
num_batches=opts['ds_size'] // opts['batch_size'])
else:
raise ValueError('Unsupported dataset: {}'.format(opts['dataset']))
data_loader = DataLoader(dataset, batch_size=1, shuffle=True, num_workers=0,
collate_fn=dataset.collate_single)
# Initialize_model
model = DGMG(v_max=opts['max_size'],
node_hidden_size=opts['node_hidden_size'],
num_prop_rounds=opts['num_propagation_rounds'])
# Initialize optimizer
if opts['optimizer'] == 'Adam':
optimizer = Adam(model.parameters(), lr=opts['lr'])
else:
raise ValueError('Unsupported argument for the optimizer')
t2 = time.time()
# Training
model.train()
for epoch in range(opts['nepochs']):
batch_count = 0
batch_loss = 0
batch_prob = 0
optimizer.zero_grad()
for i, data in enumerate(data_loader):
log_prob = model(actions=data)
prob = log_prob.detach().exp()
loss = - log_prob / opts['batch_size']
prob_averaged = prob / opts['batch_size']
loss.backward()
batch_loss += loss.item()
batch_prob += prob_averaged.item()
batch_count += 1
if batch_count % opts['batch_size'] == 0:
printer.update(epoch + 1, {'averaged_loss': batch_loss,
'averaged_prob': batch_prob})
if opts['clip_grad']:
clip_grad_norm_(model.parameters(), opts['clip_bound'])
optimizer.step()
batch_loss = 0
batch_prob = 0
optimizer.zero_grad()
t3 = time.time()
model.eval()
evaluator.rollout_and_examine(model, opts['num_generated_samples'])
evaluator.write_summary()
t4 = time.time()
print('It took {} to setup.'.format(datetime.timedelta(seconds=t2-t1)))
print('It took {} to finish training.'.format(datetime.timedelta(seconds=t3-t2)))
print('It took {} to finish evaluation.'.format(datetime.timedelta(seconds=t4-t3)))
print('--------------------------------------------------------------------------')
print('On average, an epoch takes {}.'.format(datetime.timedelta(
seconds=(t3-t2) / opts['nepochs'])))
del model.g
torch.save(model, './model.pth')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='DGMG')
# configure
parser.add_argument('--seed', type=int, default=9284, help='random seed')
# dataset
parser.add_argument('--dataset', choices=['cycles'], default='cycles',
help='dataset to use')
parser.add_argument('--path-to-dataset', type=str, default='cycles.p',
help='load the dataset if it exists, '
'generate it and save to the path otherwise')
# log
parser.add_argument('--log-dir', default='./results',
help='folder to save info like experiment configuration '
'or model evaluation results')
# optimization
parser.add_argument('--batch-size', type=int, default=10,
help='batch size to use for training')
parser.add_argument('--clip-grad', action='store_true', default=True,
help='gradient clipping is required to prevent gradient explosion')
parser.add_argument('--clip-bound', type=float, default=0.25,
help='constraint of gradient norm for gradient clipping')
args = parser.parse_args()
from utils import setup
opts = setup(args)
main(opts)