-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathmodel.py
205 lines (174 loc) · 8.72 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import numpy as np
import tensorflow as tf
import gym
from utils import *
from rollouts import *
from value_function import *
import time
import os
import logging
import random
import multiprocessing
class TRPO(multiprocessing.Process):
def __init__(self, args, observation_space, action_space, task_q, result_q):
multiprocessing.Process.__init__(self)
self.task_q = task_q
self.result_q = result_q
self.observation_space = observation_space
self.action_space = action_space
self.args = args
def makeModel(self):
self.observation_size = self.observation_space.shape[0]
self.action_size = np.prod(self.action_space.shape)
self.hidden_size = 64
weight_init = tf.random_uniform_initializer(-0.05, 0.05)
bias_init = tf.constant_initializer(0)
config = tf.ConfigProto(
device_count = {'GPU': 0}
)
self.session = tf.Session(config=config)
self.obs = tf.placeholder(tf.float32, [None, self.observation_size])
self.action = tf.placeholder(tf.float32, [None, self.action_size])
self.advantage = tf.placeholder(tf.float32, [None])
self.oldaction_dist_mu = tf.placeholder(tf.float32, [None, self.action_size])
self.oldaction_dist_logstd = tf.placeholder(tf.float32, [None, self.action_size])
with tf.variable_scope("policy"):
h1 = fully_connected(self.obs, self.observation_size, self.hidden_size, weight_init, bias_init, "policy_h1")
h1 = tf.nn.relu(h1)
h2 = fully_connected(h1, self.hidden_size, self.hidden_size, weight_init, bias_init, "policy_h2")
h2 = tf.nn.relu(h2)
h3 = fully_connected(h2, self.hidden_size, self.action_size, weight_init, bias_init, "policy_h3")
action_dist_logstd_param = tf.Variable((.01*np.random.randn(1, self.action_size)).astype(np.float32), name="policy_logstd")
# means for each action
self.action_dist_mu = h3
# log standard deviations for each actions
self.action_dist_logstd = tf.tile(action_dist_logstd_param, tf.pack((tf.shape(self.action_dist_mu)[0], 1)))
batch_size = tf.shape(self.obs)[0]
# what are the probabilities of taking self.action, given new and old distributions
log_p_n = gauss_log_prob(self.action_dist_mu, self.action_dist_logstd, self.action)
log_oldp_n = gauss_log_prob(self.oldaction_dist_mu, self.oldaction_dist_logstd, self.action)
# tf.exp(log_p_n) / tf.exp(log_oldp_n)
ratio = tf.exp(log_p_n - log_oldp_n)
# importance sampling of surrogate loss (L in paper)
surr = -tf.reduce_mean(ratio * self.advantage)
var_list = tf.trainable_variables()
eps = 1e-8
batch_size_float = tf.cast(batch_size, tf.float32)
# kl divergence and shannon entropy
kl = gauss_KL(self.oldaction_dist_mu, self.oldaction_dist_logstd, self.action_dist_mu, self.action_dist_logstd) / batch_size_float
ent = gauss_ent(self.action_dist_mu, self.action_dist_logstd) / batch_size_float
self.losses = [surr, kl, ent]
# policy gradient
self.pg = flatgrad(surr, var_list)
# KL divergence w/ itself, with first argument kept constant.
kl_firstfixed = gauss_selfKL_firstfixed(self.action_dist_mu, self.action_dist_logstd) / batch_size_float
# gradient of KL w/ itself
grads = tf.gradients(kl_firstfixed, var_list)
# what vector we're multiplying by
self.flat_tangent = tf.placeholder(tf.float32, [None])
shapes = map(var_shape, var_list)
start = 0
tangents = []
for shape in shapes:
size = np.prod(shape)
param = tf.reshape(self.flat_tangent[start:(start + size)], shape)
tangents.append(param)
start += size
# gradient of KL w/ itself * tangent
gvp = [tf.reduce_sum(g * t) for (g, t) in zip(grads, tangents)]
# 2nd gradient of KL w/ itself * tangent
self.fvp = flatgrad(gvp, var_list)
# the actual parameter values
self.gf = GetFlat(self.session, var_list)
# call this to set parameter values
self.sff = SetFromFlat(self.session, var_list)
self.session.run(tf.initialize_all_variables())
# value function
# self.vf = VF(self.session)
self.vf = LinearVF()
self.get_policy = GetPolicyWeights(self.session, var_list)
def run(self):
self.makeModel()
while True:
paths = self.task_q.get()
if paths is None:
# kill the learner
self.task_q.task_done()
break
elif paths == 1:
# just get params, no learn
self.task_q.task_done()
self.result_q.put(self.get_policy())
elif paths[0] == 2:
# adjusting the max KL.
self.args.max_kl = paths[1]
self.task_q.task_done()
else:
mean_reward = self.learn(paths)
self.task_q.task_done()
self.result_q.put((self.get_policy(), mean_reward))
return
def learn(self, paths):
# is it possible to replace A(s,a) with Q(s,a)?
for path in paths:
path["baseline"] = self.vf.predict(path)
path["returns"] = discount(path["rewards"], self.args.gamma)
path["advantage"] = path["returns"] - path["baseline"]
# path["advantage"] = path["returns"]
# puts all the experiences in a matrix: total_timesteps x options
action_dist_mu = np.concatenate([path["action_dists_mu"] for path in paths])
action_dist_logstd = np.concatenate([path["action_dists_logstd"] for path in paths])
obs_n = np.concatenate([path["obs"] for path in paths])
action_n = np.concatenate([path["actions"] for path in paths])
# standardize to mean 0 stddev 1
advant_n = np.concatenate([path["advantage"] for path in paths])
advant_n -= advant_n.mean()
advant_n /= (advant_n.std() + 1e-8)
# train value function / baseline on rollout paths
self.vf.fit(paths)
feed_dict = {self.obs: obs_n, self.action: action_n, self.advantage: advant_n, self.oldaction_dist_mu: action_dist_mu, self.oldaction_dist_logstd: action_dist_logstd}
# parameters
thprev = self.gf()
# computes fisher vector product: F * [self.pg]
def fisher_vector_product(p):
feed_dict[self.flat_tangent] = p
return self.session.run(self.fvp, feed_dict) + p * self.args.cg_damping
g = self.session.run(self.pg, feed_dict)
# solve Ax = g, where A is Fisher information metrix and g is gradient of parameters
# stepdir = A_inverse * g = x
stepdir = conjugate_gradient(fisher_vector_product, -g)
# let stepdir = change in theta / direction that theta changes in
# KL divergence approximated by 0.5 x stepdir_transpose * [Fisher Information Matrix] * stepdir
# where the [Fisher Information Matrix] acts like a metric
# ([Fisher Information Matrix] * stepdir) is computed using the function,
# and then stepdir * [above] is computed manually.
shs = 0.5 * stepdir.dot(fisher_vector_product(stepdir))
lm = np.sqrt(shs / self.args.max_kl)
# if self.args.max_kl > 0.001:
# self.args.max_kl *= self.args.kl_anneal
fullstep = stepdir / lm
negative_g_dot_steppdir = -g.dot(stepdir)
def loss(th):
self.sff(th)
# surrogate loss: policy gradient loss
return self.session.run(self.losses[0], feed_dict)
# finds best parameter by starting with a big step and working backwards
theta = linesearch(loss, thprev, fullstep, negative_g_dot_steppdir/ lm)
# i guess we just take a fullstep no matter what
theta = thprev + fullstep
self.sff(theta)
surrogate_after, kl_after, entropy_after = self.session.run(self.losses,feed_dict)
episoderewards = np.array(
[path["rewards"].sum() for path in paths])
stats = {}
stats["Average sum of rewards per episode"] = episoderewards.mean()
stats["Entropy"] = entropy_after
stats["max KL"] = self.args.max_kl
stats["Timesteps"] = sum([len(path["rewards"]) for path in paths])
# stats["Time elapsed"] = "%.2f mins" % ((time.time() - start_time) / 60.0)
stats["KL between old and new distribution"] = kl_after
stats["Surrogate loss"] = surrogate_after
# print ("\n********** Iteration {} ************".format(i))
for k, v in stats.iteritems():
print(k + ": " + " " * (40 - len(k)) + str(v))
return stats["Average sum of rewards per episode"]