-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
296 lines (267 loc) · 8.23 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import os
import json
import datetime
import argparse
import typing
import pandas as pd
import time
import tensorflow as tf
import numpy as np
import functools
from tensorflow.keras.callbacks import TensorBoard,\
ModelCheckpoint, \
EarlyStopping, \
CSVLogger
from models import models
import dataloader.dataloader as real_prepare_dataloader
import dataloader.synthetic_dataloader as synthetic_dataloader
from models import prepare_model
from dataloader.dataset_processing import interpolate_GHI
np.random.seed(12345)
tf.random.set_seed(12345)
def main(
config: typing.Dict[typing.AnyStr, typing.Any],
admin_config_path: typing.AnyStr,
user_config_path: typing.Optional[typing.AnyStr] = None
) -> None:
print(tf.config.experimental.list_physical_devices('GPU'))
if user_config_path:
assert os.path.isfile(user_config_path), f"invalid user config file: {user_config_path}"
with open(user_config_path, "r") as fd:
user_config = json.load(fd)
else:
user_config = {}
user_config.update(vars(config))
print(user_config)
assert os.path.isfile(admin_config_path), f"invalid admin config file: {admin_config_path}"
with open(admin_config_path, "r") as fd:
admin_config = json.load(fd)
# training dataframe
catalog_dataframe_path = user_config["train_dataset_path"]
assert os.path.isfile(catalog_dataframe_path), f"invalid dataframe path: {catalog_dataframe_path}"
catalog_dataframe = pd.read_pickle(catalog_dataframe_path)
training_dataframe = catalog_dataframe.copy()
if user_config['train_start_bound']:
training_dataframe = \
training_dataframe[training_dataframe.index >= datetime.datetime.fromisoformat(
user_config['train_start_bound'])]
if user_config["train_end_bound"]:
training_dataframe = \
training_dataframe[training_dataframe.index < datetime.datetime.fromisoformat(
user_config["train_end_bound"])]
training_dataframe = training_dataframe[training_dataframe.hdf5_16bit_path != 'nan']
training_datetimes = training_dataframe.index.to_list()
# val_dataframe
val_dataframe = catalog_dataframe.copy()
if user_config["val_start_bound"]:
val_dataframe = \
val_dataframe[val_dataframe.index >= datetime.datetime.fromisoformat(
user_config["val_start_bound"])]
if user_config["val_end_bound"]:
val_dataframe = \
val_dataframe[val_dataframe.index < datetime.datetime.fromisoformat(
user_config["val_end_bound"])]
# filtering val entries that have nan as path
val_dataframe = val_dataframe[val_dataframe.hdf5_16bit_path != 'nan']
validation_datetimes = val_dataframe.index.to_list()
# Interpolate missing GHI values
training_dataframe = interpolate_GHI(training_dataframe)
val_dataframe = interpolate_GHI(val_dataframe)
target_stations = admin_config["stations"]
target_time_offsets = [pd.Timedelta(d).to_pytimedelta(
) for d in admin_config["target_time_offsets"]]
TRAIN_DT_LENGTH = functools.reduce(
lambda agr, s: training_dataframe['{}_DAYTIME'.format(s)].sum() + agr,
target_stations,
0
)
VAL_DT_LENGTH = functools.reduce(
lambda agr, s: val_dataframe['{}_DAYTIME'.format(s)].sum() + agr,
target_stations,
0
)
STEPS_PER_EPOCH = int(TRAIN_DT_LENGTH) // user_config["batch_size"]
VALIDATION_STEPS = int(VAL_DT_LENGTH) // user_config["batch_size"]
if user_config['real']:
# real dataloader is expecting a Dict {} object in evaluation
prepare_dataloader = real_prepare_dataloader.prepare_dataloader_train
else:
# load synthetic data
prepare_dataloader = synthetic_dataloader.prepare_dataloader
train_data_loader = prepare_dataloader(
training_dataframe,
training_datetimes,
target_stations,
target_time_offsets,
user_config
).prefetch(tf.data.experimental.AUTOTUNE)
val_data_loader = prepare_dataloader(
val_dataframe,
validation_datetimes,
target_stations,
target_time_offsets,
user_config
).prefetch(tf.data.experimental.AUTOTUNE)
timestamp = time.time()
model_id = str(timestamp) + "_" + user_config['model']
checkpointer = ModelCheckpoint(
filepath=os.path.join(
user_config['checkpoint_path'],
model_id + ".h5"
),
monitor='val_scaled_rmse',
verbose=1,
save_best_only=True,
save_weights_only=True
)
tb = TensorBoard(
log_dir=os.path.join(
'results',
'logs',
model_id
),
histogram_freq=1,
write_graph=True,
write_images=False
)
early_stopper = EarlyStopping(patience=5)
csv_logger = CSVLogger(
os.path.join(
'results',
'logs',
'backups',
model_id + '.log'
)
)
model = prepare_model(
target_stations,
target_time_offsets,
user_config
)
model.fit_generator(
train_data_loader,
epochs=user_config['epoch'],
use_multiprocessing=True,
workers=32,
callbacks=[tb, csv_logger, checkpointer],
steps_per_epoch=STEPS_PER_EPOCH // 16,
validation_steps=VALIDATION_STEPS // 4,
validation_data=val_data_loader
)
print(model.summary())
if __name__ == "__main__":
DEFAULT_SEQ_LEN = 6
DEFAULT_CHANNELS = ["ch1", "ch2", "ch3", "ch4", "ch6"]
DEFAULT_IMAGE_SIZE = 80
parser = argparse.ArgumentParser()
parser.add_argument(
"--real",
action='store_true',
help="train on synthetic mnist data",
)
parser.add_argument(
"--crop-size",
type=int,
help="size of the crop frame",
default=DEFAULT_IMAGE_SIZE
)
parser.add_argument(
"--epoch",
type=int,
help="epoch count",
default=15
)
parser.add_argument(
"--seq-len",
type=int,
help="sequence length of frames in video",
default=DEFAULT_SEQ_LEN
)
parser.add_argument(
"--batch-size",
type=int,
help="batch size of data",
default=32
)
parser.add_argument(
"--model",
type=str,
help="model to be train/tested",
default="dummy"
)
parser.add_argument(
"--channels",
dest='channels',
help="channels to keep",
type=str,
nargs='*',
default=DEFAULT_CHANNELS
)
parser.add_argument(
"-u",
"--user_cfg_path",
type=str,
default=None,
help="path to the JSON config file used to store user model/dataloader parameters"
)
parser.add_argument(
"admin_config_path",
type=str,
help="path to the JSON config file used to store test set/evaluation parameters"
)
parser.add_argument(
"input_shape",
help="input shape of first model layer",
type=str,
nargs='*',
default=(
DEFAULT_SEQ_LEN,
DEFAULT_IMAGE_SIZE,
DEFAULT_IMAGE_SIZE,
len(DEFAULT_CHANNELS)
)
)
parser.add_argument(
"--target_past_len",
type=int,
help="past number of targets to append to target output",
default=1
)
parser.add_argument(
"--target_past_interval",
type=int,
help="past intervel to append the target output",
default=15
)
parser.add_argument(
"--input_past_interval",
type=int,
help="past intervel to append the input",
default=15
)
parser.add_argument(
"--target_name",
type=str,
help="past target name to append",
default="GHI"
)
parser.add_argument(
"-lr",
"--learning_rate",
type=float,
help="Learning rate for optimization",
default=1e-5,
)
parser.add_argument(
"-dr",
"--decay_rate",
type=float,
help="Decay rate",
default=1e-5,
)
args = parser.parse_args()
main(
args,
admin_config_path=args.admin_config_path,
user_config_path=args.user_cfg_path,
)